
Principles of stereo reconstruction of aerial objects using 
stationary cameras
David M. Romps a,b

aDepartment of Earth and Planetary Science, University of California, Berkeley, CA, USA; bClimate and 
Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

ABSTRACT
An overview is given here of the principles and mathematics of 
stereo reconstruction of objects in the sky using stationary cameras 
with an emphasis on meteorological applications. Through its 
Atmospheric Radiation Measurement program, the Department of 
Energy has operated stereo-photogrammetric cameras since 2017 
as part of an effort to measure the life-cycle properties of clouds. At 
the core of that technology is stereo reconstruction, which calcu-
lates the real-world position of an object from the location of the 
object’s image in two cameras’ photographs. Here, stereo recon-
struction is stripped down to its basic elements and presented 
using conventions tailored to applications in atmospheric science. 
In addition, the resulting equations are used to illustrate the high 
sensitivity of reconstructed cloud positions to errors in the cameras’ 
Euler angles. The interested reader will find here a self-contained 
guide to performing stereo reconstructions using distortion- 
corrected images from a pair of calibrated, stationary cameras, as 
well as a demonstration of the need for high accuracy in the 
measurement of camera properties and orientations.
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1. Introduction

Stereo photogrammetry uses simultaneous images from two or more cameras to recon-
struct the visible scene in three dimensions, i.e., to calculate the X , Y, and Z positions of 
objects in the cameras’ common field of view. This technique has been used to study 
clouds since the late 1800s, when researchers began using multiple cameras to measure 
the altitudes of noctilucent clouds in the mesosphere (Foerster and Jesse 1892; Jesse  
1896; Paton 1949; Størmer 1933; Witt 1962). Stereo photogrammetry has been applied to 
clouds in the troposphere from the 1950s up to the present day (e.g., Beekmans et al.  
2016; Bradbury and Fujita 1968; Damiani et al. 2008; Kassander and Sims 1957; Malkus and 
Ronne 1954; Romps and Öktem 2018). In particular, stereo cameras have been used to 
calculate the altitudes of cloud bases (Allmen and Kegelmeyer 1996; Kassianov, Long, and 
Christy 2005; Savoy et al. 2017; Seiz, Baltsavias, and Gruen 2002), the heights of cumuli-
form clouds (Beekmans et al. 2016; Zehnder, Hu, and Razdan 2007), and cloud-top vertical 
velocities (Orville and Kassander 1961; Zehnder et al. 2007). These techniques have led to 
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several scientific advances, including the demonstration of small entrainment rates in 
deep tropical convection (Malkus and Ronne 1954); vortical circulations in convective 
cloud tops (Warner et al. 1973); the dominance of drag in the momentum budget of rising 
clouds (Romps and Öktem 2015); the degree of plume-like versus bubble-like behaviour 
in shallow moist convection (Romps et al. 2021); and a theory for the spacing of shallow 
clouds (Öktem and Romps 2021).

Today, the U.S. Department of Energy runs one of the most extensive and sustained 
efforts in tropospheric stereo photogrammetry, gathering data on clouds since 2017 as 
part of its Atmospheric Radiation Measurement (ARM) program. At the time of this 
publication, ARM has a total of eight stereo cameras, including six at the Southern 
Great Plains site in Oklahoma (Romps and Öktem 2018) and two as part of the first ARM 
Mobile Facility (AMF1). The AMF1 cameras have travelled to Argentina as part of the CACTI 
campaign (Varble et al. 2018) and to Houston, Texas, as part of the TRACER campaign 
(Jensen et al. 2022). Figure 1 shows a pair of simultaneous images taken by the AMF1 
cameras during the TRACER campaign. These cameras were facing roughly west and were 
separated by a north-south distance of about 1 km. The image on the left was taken by the 
southern (or left) camera, and the image on the right was taken by the northern (or right) 
camera.

Inspecting Figure 1, we see many cloud features that are present in both images, five of 
which are indicated by coloured arrows. Identifying and matching those features is the 
first step in stereo reconstruction. In the early days, this feature matching was done 
manually, but computers now perform this task using techniques like the Scale 
Invariant Feature Transform (SIFT; Lowe 1999) or block matching (Öktem and Romps  
2015). For each feature point in a matched pair, we record the position of the feature point 
in the left camera’s photograph. This position is represented by a pair of numbers giving, 
e.g., the distance (or number of pixels) up and to the right of the photograph’s lower-left 
corner (xl0 and yl0). Likewise, we record the position of the feature point in the right 
camera’s photograph (xr0 and yr0). The second step is to take those four numbers and 

Figure 1. Images from the (left) left and (right) right stereo cameras taken at 15:15:20 UTC on 
August 27, 2022 during the TRACER campaign. Coloured arrows have been added to draw attention 
to a sample of five feature points (among hundreds) matched between the two images. Note that the 
horizon in these photos is warped; these images have not yet been corrected for radial distortion.
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calculate the position of the feature point in three-dimensional space (X , Y, and Z) using 
the methods described in section 2.

In practice, stereo photogrammetry involves far more than just stereo reconstruc-
tion. Considerable effort must be devoted to measuring the intrinsic (optical) proper-
ties of the cameras, deploying them in rigid orientations with suitable fields of view, 
measuring the orientation (i.e., Euler angles) of those deployed cameras, synchroniz-
ing the photographs taken by the cameras, correcting the resulting images for radial 
distortion, and using suitable algorithms for feature identification and matching. 
Only then can we reconstruct three-dimensional positions. And after we have done 
so, there are many additional post-processing steps that might be desired, such as 
using techniques of computer vision to identify edges and/or faces of clouds to 
make sense of the results (Romps and Öktem 2018). Despite all of this complexity, 
the step of stereo reconstruction – i.e., calculating the X , Y, and Z from the xl0, yl0, xr0, 
and yr0 – lies at the core of any stereo-photogrammetric effort. While stereo recon-
struction is covered in many computer-vision textbooks (e.g., Forsyth and Ponce  
2002; Hartley and Zisserman 2003), the goal here is to describe the basic principles 
of stereo reconstruction and its mathematics using conventions that are particularly 
well-suited to the application of stereo photogrammetry to atmospheric science and 
to provide a guide for those interested in making meteorological measurements 
using stationary stereo cameras.

2. Stereo reconstruction

The objective of stereo reconstruction is to calculate the position of an object in Cartesian 
world coordinates using the location of the object’s image in the image planes of two 
cameras. In this section, we will derive the equation for this stereo reconstruction. 
However, to do so, we must first solve the opposite problem: calculating the location of 
an object’s image in a camera’s image plane given the object’s world coordinates. Only 
once we have solved that forward problem can we invert to perform stereo 
reconstruction.

Let us denote an object’s world coordinates by X à ÖX; Y; ZÜT. Assuming we are far 
from Earth’s poles, we will adopt the standard convention in atmospheric science in which 
X increases to the east, Y increases to the north, and Z increases upwards. The location of 
the object’s image in a camera’s image plane will clearly depend on many factors, 
including where the camera is and in what direction the camera is pointing. We will 
deal with each of these factors in turn, starting with the camera’s location.

Despite the multiple lenses in modern cameras, photographs corrected for radial 
distortion can be interpreted as if they were generated by an idealized pinhole camera. 
In such a model, light reaches the sensor by passing in a straight line from a source to the 
image plane through a small hypothetical pinhole in the camera’s housing. For any 
camera, the location of this equivalent pinhole is termed the camera centre (also known 
as the centre of projection or the perspective centre); this is where a pinhole would need 
to be to generate an identical image. Thus, we can model the image captured by a lens- 
based camera using a pinhole camera model with the pinhole located at the camera 
centre.
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Let us denote the location of the camera centre as X0 à ÖX0; Y0; Z0ÜT. We will want to 
subtract this from X to get the object’s camera-relative position. Although we could write 
this as X � X0, it is standard practice to write this using matrix multiplication. To this end, 
let us define X à ÖX; Y; Z; 1ÜT to be the object’s homogeneous world coordinates. 
Throughout, X will be a three-component Cartesian vector and X will be the correspond-
ing four-component homogeneous coordinates; note that one is italicized and one is not. 
Using this notation, the camera-relative location of the object is TX, where 

Thus, TX à ÖX � X0; Y � Y0; Z � Z0ÜT. Next, we need to account for the orientation of the 
camera, which we describe using Euler angles.

Unfortunately, Euler angles can be and have been defined in many different ways, 
leading to ample opportunity for confusion. Worse yet, these angles can be defined on 
a variety of different world coordinates. There are two such world coordinates that are 
commonly used in the broader field of computer vision. The first is a right-handed 
coordinate system in which Y points up, which contravenes the meteorological conven-
tion of Y pointing north. The second convention is a left-handed coordinate system in 
which Z points up, X points to the east, but Y points to the south. As a further complica-
tion, it is a standard convention in computer vision to define all rotations as right-handed. 
This is contrary to the meteorological definition of azimuth, in which an increase in 
azimuth rotates a vector around the Z axis in a left-handed fashion (i.e., clockwise as 
seen from above). These considerations motivate defining a set of Euler angles suited to 
meteorological applications.

To begin, we must first define what we mean by a camera’s image plane. In a pinhole 
camera, the camera centre is located at the pinhole, and the image plane is a surface 
behind that pinhole, i.e., inside the camera. Similarly, for a lens-based camera, the camera 
centre is a virtual point amidst the assembly of lenses, and the image plane – occupied by 
an electronic sensor – is located behind camera centre, i.e., deeper inside the camera. In 
both cases, the images that get projected onto the image plane are inverted. The resulting 
digital images, however, are always presented to the user inverted a second time. To 
avoid needing to think about this double inversion, we may imagine that our image plane 
is in front of the camera centre, as depicted in Figure 2. In this way, objects project onto 
the image plane via the line that connects them to the camera centre, and the resulting 
image is aligned with the real world: objects higher up from the camera’s perspective 
appear higher up in the image, and objects that are further to the right from the camera’s 
perspective appear further to the right in the image.

A camera carries two sets of axes with it as it rotates about its camera centre. 
First, we have the three-dimensional coordinates x à Öx; y; zÜT in the frame of the 
camera. By convention, x à y à z à 0 is the camera centre, z is in the direction the 
camera is pointing (from the camera centre and normal to the image plane), x 
points out through the right side of the camera, and y points up through the top 
of the camera. Second, we have the coordinates x0 and y0 for the image plane. 
Note that we will reserve primes exclusively for image-plane coordinates. 
A common convention is to define x0 à y0 à 0 as the upper left corner of the 
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image with either x0 or y0 increasing to the right and the other increasing down-
wards. Here, we will adopt a more intuitive convention by defining x0 à y0 à 0 as 
the lower-left corner of the image plane, with x0 increasing to the right and y0

increasing upwards.
Let us now define three angles: azimuth θa, which is zero when the camera is pointing 

north and which increases as the compass direction changes clockwise (i.e., pointing east 
is θa à π=2); pitch θp, which is zero when pointing at the horizon and increases upward 
(i.e., pointing up is θp à π=2); and roll θr, which is zero when the base of the camera is 
parallel with the ground and increases with a right-handed rotation around the pointing 
direction (i.e., the right side of the camera facing down corresponds to θr à π=2). For 
θa à θp à θr à 0, the camera points north and is level with the horizon. In this case, 
x à STX, where the swap matrix S is defined as 

which effectively swaps the Y and Z axes. Therefore, if θa à θp à θr à 0, then an object at 
X is located, in the camera’s frame, at x à STX à ÖX � X0; Z � Z0; Y � Y0ÜT.

If the camera is oriented differently – i.e., for general θa, θp, and θr – the relationship 
between x and X gets modified by a rotation matrix. Here, let cζ à cosÖθζÜ and 
sζ à sinÖθζÜ, where ζ equals a, p, or r. In this case, x à RSTX with the rotation matrix R 
given by 

Figure 2. The location and orientation of the camera when the camera centre is at the origin of the 
world coordinates and θa à θp à θr à 0. In this orientation, the camera is pointing north with the 
camera’s bottom facing down. The circle at the origin is the camera centre and the shaded rectangle is 
the image plane, which has been placed in front of the camera centre.
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If the angles are all zero, then each of these is an identity matrix. On the other hand, if the 
angles are non-zero, then these correspond to a rotation of θa around the camera’s y axis 
(to set the azimuth), followed by a rotation of θp around the camera’s new x axis (to set 
the pitch), followed by a rotation of θr around the camera’s new z axis (to set the roll). Also, 
note that these matrices do not transform the camera itself; instead, they transform the 
location of objects to the camera’s new coordinate system. For example, the right-most 
matrix with θa à π=2, which orients the camera eastward, transforms a point originally at 
Ö10; 0; 0ÜT, which is ten units of distance to the camera’s right when the camera points 
north, to Ö0; 0; 10ÜT, which is ten units directly in front of the camera.

Finally, we can define the camera matrix C, which projects objects in three-dimensional 
space onto the two-dimensional image plane. This projection is defined by the line 
connecting the object to the camera centre (at x à y à z à 0); the image of that object 
is located where the line intersects the image plane. That location on the image plane can 
be given in terms of the coordinates x0 and y0, with x0 increasing to the right, y0 increasing 
upwards, and x0 à y0 à 0 corresponding to the lower-left corner of the image plane. As 
with world coordinates, we can define a Cartesian vector x0 à Öx0; y0ÜT on the image plane 
and also homogeneous coordinates x0 à Öx0; y0; 1ÜT. For the purposes of projecting the 
object onto the image plane, it is easier to work with the homogeneous coordinates. In 
particular, x0 is related to the camera-relative position x of the object by the equation 
wx0 à Cx for some real number w, where the camera matrix C is defined as 

Here, f is the focal length and x0p and y0p are the coordinates of the principal point on the 
image plane. The principal point is the orthogonal projection of the camera centre to the 
image plane. A camera configured to photograph distant objects in the sky will be 
focused at infinity, so the distance from the camera centre to the principal point (called 
the principal distance) will be equal to the focal length f .

To see why wx0 à Cx is the correct equation, let us consider the case where the object 
is at y à 0 so that we can picture everything in the y à 0 plane. This case is equivalent to 
a camera in two dimensions. In this case, x à Öx; 0; zÜT and wx0 à Cx can be written out as 

Using the last equation to eliminate w from the first two and then dividing both sides of 
those equations by z, we get 
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The second equation is telling us that the object’s image will be at the same height in the 
image plane as the principal point; this is just a consequence of the object and principal 
point both being at y à 0. The first equation is more interesting: it gives the left-right 
position of the object’s image in the image plane (x0) as a function of the object’s position 
(x and z). This equation can be rewritten as 

This is a straightforward consequence of geometry, as illustrated in Figure 3. Here, we see 
that there are two right triangles that are similar: one with legs of length x0 � x0p and f and 
the other with legs of length x and z. Since they are similar, the ratios of their leg lengths 
are equal. Therefore, we see that the camera matrix encodes this geometrical fact.

Combining x à RSTX and wx0 à Cx, we have 

for some real number w, where the projection matrix P is defined as 

Figure 3. A camera in two dimensions, illustrating the relationship between an object’s camera- 
relative two-dimensional coordinates (x and z) and the position of the object’s image in the image 
plane (x0).
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with T, S, R, and C as defined in Equations (1), (2), (3), and (4).
Now, imagine that we have two cameras, which we will refer to as left and right with 

subscripts l and r, respectively. Because they have different locations and possibly 
different orientations, focal lengths, and image sensors, they will have different projection 
matrices. Let us call them Pl and Pr. Similarly, let the homogeneous coordinates of the 
image of X in the two image planes be xl0 and xr0. We now have two equations, 

for some real numbers wl and wr. These are six equations, which we can write out 
explicitly as 

where the subscripts denote the component of the homogeneous coordinates. Using 
Equations (17) and (20) to eliminate wl and wr, these become 

We see that we have four homogeneous linear equations in X. We can write them out 
explicitly as 
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where Pl
mn is the element in row m and column n of the matrix Pl, and likewise for Pr

mn. 
With a little algebra, this can be written as four linear equations in X , which we can 
write as 

where A is a four-by-three matrix, 

and B is a four-by-one matrix, 

Since there are four equations and only three degrees of freedom in X, this is an over-
determined problem. To understand how we ended up with an overdetermined problem, 
consider an object whose image appears at xl0 in the left camera’s image plane. If that is all 
the information we have, then we only know that the object is located somewhere along 
the line connecting the left camera centre and the point xl0 on the left camera’s image 
plane. Next, imagine that we make that line visible to all using a powerful laser beam that 
reflects off the impurities in the air along its path. In the left camera’s image plane, the 
reflected light from that laser beam would appear simply as a point in its image plane 
because the beam intersects its camera centre. In general, however, the laser beam does 
not pass through the right camera centre, so the illuminated path appears as a line in the 
image plane of the right camera. That line is called the ‘epipolar line’, and the image of the 
object must lie on that line in the right camera’s image plane. To resolve the ambiguity as to 
where the object is, we only need to know where it is on that epipolar line, which can be 
determined with only one piece of additional information: either xr0 or yr0. That would give 
us three pieces of information to determine the three world coordinates of the object.

In reality, we do not reconstruct positions that way. Instead, we use both xr0 and yr0. If 
both the cameras were perfect and our knowledge of the camera’s projection matrices 
were perfect, then the four equations would be degenerate and we could solve for X 
using only three of them. In reality, however, neither the cameras nor our information is 
perfect. The way this manifests in the images is that xr0 does not lie exactly on the epipolar 
line corresponding to xl0. Mathematically, this manifests as there being no solution 
to AX à B.

To deal with this, we estimate the object’s position as the X that minimizes the sum of 
squared residuals 
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Differentiating with respect to X and setting the result to zero, we get 

This, then, is our estimate of the position of the object in world coordinates and our stereo 
reconstruction is complete.

3. Sensitivity to error

The above equations are straightforward to code in programming languages like R and 
Python. If attempting these calculations for the first time, a worthwhile exercise is to code 
up the projection matrix for a single camera with some arbitrarily chosen parameters, 
choose an arbitrary X, and then calculate x0 and confirm that it is roughly as expected. For 
this purpose, it can be helpful if the arbitrary parameters are chosen to be rather simple. 
A next step can be to vary X or some of the camera parameters and make sense of how x0

varies in response. Finally, to put all of the equations through a sanity check, parameters 
for two cameras can be defined, two sets of x0 calculated, and then those x0 values, along 
with the two projection matrices, can be used to reconstruct X. If everything has been 
coded properly, this will return the original position.

As mentioned above, there is always some amount of error, or uncertainty, in the 
values fed into this mathematical machinery. For example, the Euler angles of the cameras 
are never known exactly, and even a small object in the field of view may appear smudged 
out over a few pixels in the digital images. Since reconstructions are sensitive to these 
errors, it is essential, in practice, to reduce the uncertainties as much as possible by, e.g., 
measuring the Euler angles as accurately as possible and using a camera with high-quality 
optics.

To illustrate the sensitivity of reconstructions to measurement errors, consider two 
cameras at ground level that are separated by a 1-km east-west baseline. Without any loss 
of generality, we may choose a world coordinate system that has the left camera at 
X l

0 à Ö�0:5km; 0; 0ÜT and the right camera at Xr
0 à Ö0:5km; 0; 0ÜT. Consider a feature 

point (e.g., on a cloud) located 10 km north of and 5 km above the middle of the cameras’ 
baseline, i.e., X à Ö0; 10km; 5kmÜT. This configuration – with a 1-km baseline and a mid- 
tropospheric cloud 10-km away – is typical in the stereo photogrammetry of clouds. For 
simplicity, let us also assume that each of the cameras is pointed directly at that feature 
point with zero roll. To find the Euler angles that this implies for the left camera, we use 

x à RSTX with STXà Ö0:5; 5; 10ÜT and x à Ö0; 0;
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
0:52 á 102 á 52

p
ÜT and, recalling that 

θr à 0, solve for θp and θa in R. This gives θl
a à tan�1 0:05Ö Ü and 

θl
p à tan�1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1:0025
p

=2:005
� �

. By symmetry of the setup, θr
a à �θl

a and θr
p à θl

p.
In reality, there will be errors in the measurement of the cameras’ Euler angles and in 

the measurement of the location of the feature point’s image in the image plane. For the 
setup described here, a small error δθl

p in θl
p adds approximately the same error to the 

reconstruction as an error δθl
pf in yl0, and likewise for the right camera. Similarly, a small 

error δθl
a in θl

a adds approximately the same error to the reconstruction as an error 
cosÖθl

pÜδθl
af ⇡ 0:9δθl

af ⇡ δθl
af in xl0, and likewise for the right camera. Therefore, we can 

simultaneously emulate Euler-angle errors and feature-matching errors by adding 
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independent Gaussian errors to the components of xl0 and xr0 (i.e., four independent 
errors, drawn from a normal distribution, added in turn to each of xl0, yl0, xr0, and yr0). When 
we then reconstruct X from these image-plane coordinates, we will not get the original 
value, but the original value plus some error.

To use a small-sounding error, let us choose the standard deviation of the Euler-angle 
error to be 0.01 radians, or about 0.57�, which is equivalent to a standard deviation of 
a feature-matching error of about 0.01f . Adding independent errors drawn from a normal 
distribution with zero mean and a standard deviation of 0:01f to each of the components 
of xl0 and xr0, reconstructing X, and then repeating ten million times, we get the distribu-
tion of reconstructions shown in Figure 4. We see that errors in the Euler angles of only 
0.01 radians lead to substantial errors in the reconstruction of X, manifesting as about ⌃2  
km error in the northward distance to the cloud and ⌃1 km error in the height of the 
cloud. In practical applications of stereo photogrammetry to meteorology, the errors must 
be substantially less than this, which demands a painstaking characterization of the 
cameras’ Euler angles and optics.

4. Summary

We have stepped through the principles of stereo reconstruction using stationary cam-
eras, which have the benefit of time-invariant projection matrices. Note that we have 
assumed here that we are working with images that are consistent with a pinhole camera 
model and so are not otherwise distorted by a camera’s real optics. In practice, the images 
taken from a real camera need to be corrected for radial distortion before proceeding with 
any of the steps outlined here.

After measuring a camera’s internal parameters (f , x0p, and y0p), its position in 
world coordinates (X0, Y0, and Z0), and its azimuth, pitch, and roll (θa, θp, and θr), we 
can calculate its projection matrix using Equation (12). We do the same for 
the second camera and label them ‘left’ and ‘right’, at which point we have their 
projection matrices Pl and Pr, respectively. For any object (or cloud feature) that 
appears in both of the cameras’ synchronized images, we can measure the position 

Figure 4. Distributions of the components of the reconstructed X of the cloud given independent 
Gaussian noise in xl0, yl0, xr0, and yr0 with a standard deviation of 0:01f , which is equivalent to errors in 
the Euler angles of pitch and azimuth of about 0.01 radians. Vertical lines denote the actual values.
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of that object in the left image (xl0 and yl0) and likewise for the right image 
(xr0 and yr0). Defining the matrix A and vector B using Equations (30) and (31), we 
can then calculate (i.e., reconstruct) the three-dimensional location X of the object 
using Equation (33).

While it is straightforward to code up these equations and experiment with toy 
examples, it is important to recognize how sensitive the stereo reconstruction is to real- 
world errors and uncertainty. Even an uncertainty in the Euler angles much less than one 
degree can still lead to unacceptably large errors, as shown in Figure 4. Of great impor-
tance to practical applications, therefore, is a careful measurement of Euler angles, as well 
as careful characterization of internal camera parameters and the selection of high-quality 
optics.
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