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Latent heating is proportional to droplet radius and not droplet surface area
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A one-dimensional model is constructed to model the time-evolving temperature and humidity in a droplet’s region of
influence. Unlike the ordinary differential equations often used to model a cloud’s supersaturation and latent heating,
these partial differential equations do not make any assumption about how supersaturation and latent heating relate
to the droplet’s radius. Nevertheless, the emergent behavior from the model is as expected from theory: a droplet’s
condensation rate adjusts, nearly instantaneously, to a known factor times the product of supersaturation and droplet
radius. It is verified, therefore, that a cloud’s rate of latent heating is proportional to the sum of droplet radii, not the
sum of their surface areas.

1. Introduction

A common misconception is that the rates of condensation, evaporation, and latent heating within clouds are
proportional to or controlled by the droplet surface area. This misconception manifests in the literature in several
ways, including references to the “droplet surface area available for condensation” and related phrases (Ackerman et al.
1995; Lee et al. 2009, 2010; Lee and Penner 2011; Seigel et al. 2013; Koren et al. 2014; Sheffield et al. 2015; Koren
et al. 2015; Dagan et al. 2015; Gao et al. 2016; Chen et al. 2017; Dagan et al. 2017; Zhou et al. 2017; Fan et al. 2018;
Rosenfeld 2018; Lkhamjav et al. 2018; Patade et al. 2019; Fan et al. 2020; Chen et al. 2020; Lee et al. 2021; Zhang
et al. 2021; Wu and Peng 2022; Li et al. 2022; Fan and Li 2022; Park and van den Heever 2022; Efraim et al. 2022;
Madhulatha et al. 2023; Rosenfeld et al. 2023; Stier et al. 2024; Cotton 2024; Deng et al. 2024), references to the
“droplet surface area available for evaporation” and variants thereof (Cui et al. 2006; Petters et al. 2013; Leung et al.
2016; Dagan et al. 2017; Lee et al. 2021; Wu and Peng 2022), claims that the rates of condensation and evaporation are
mathematically proportional to the total droplet surface area (Duce et al. 1969; Dagan et al. 2017; Lee et al. 2021), and
discussions of a purported connection between droplet surface area and supersaturation (Ackerman et al. 1995; Koren
et al. 2014; Sheffield et al. 2015; Koren et al. 2015; Dagan et al. 2015; Chen et al. 2017; Fan et al. 2018; Rosenfeld
2018; Patade et al. 2019; Zhang et al. 2021; Fan and Li 2022). In some cases, the droplet surface area is presented
quantitatively – in figures and calculations – to make claims about condensation rates and supersaturation (Dagan et al.
2015; Fan et al. 2018; Wu and Peng 2022).

In reality, given the relative humidity, cloud droplets condense or evaporate in proportion to their radius, not their
surface area. This is an important distinction. Cloud A with 100 cm−3 of 16-𝜇m droplets has twice the droplet surface
area (per volume of air) as cloud B with 800 cm−3 of 4-𝜇m droplets, but, given the same relative humidity, cloud A
will evaporate or condense half as quickly as cloud B. The reason for this is that cloud A has half the sum of radii (per
cloud volume) as cloud B.

To understand why a droplet condenses or evaporates in proportion to its radius, we must first note that it is
surrounded by a diffusive boundary layer. A diffusive boundary layer requires that we are in the continuum limit of
air. Since the scale of droplets (>1 𝜇m) is much larger than the mean free path of gas-phase molecules (≪1 𝜇m), the
continuum limit is applicable and so there is a diffusive boundary layer just above the droplet surface. That boundary
layer extends out to a radius where the effects of shear from sedimentation and turbulence become important. For
droplets less than 100 𝜇m in diameter (i.e., with radius 𝑎 less than 50 𝜇m), the sedimentation rate is small and the
associated shearing of the diffusive boundary layer can be neglected (see Appendix A for a proof). Even for high
dissipation rates of turbulent kinetic energy of 0.1 m2 s−3, the Kolmogorov microscale is 500 𝜇m, which is much larger
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than these small-to-medium droplets. Therefore, small-to-medium droplets are surrounded by a diffusive boundary
layer that extends from the surface of the droplet to a radius that is much larger than the radius of the droplet itself.

Water vapor can flow to or from the droplet only by diffusing through this spherically symmetric boundary layer,
between a radius 𝑟 = 𝑎, where 𝑎 is the radius of the droplet, and a radius 𝑟 = 𝑏, where 𝑏 is the radius of the boundary
layer. For small-to-medium droplets (diameters ≲100 𝜇m), the thickness of the boundary layer is much greater than
the radius of the droplet, i.e., 𝑏/𝑎 ≫ 1. Therefore, when calculating the response of a droplet to known far-field
conditions, we may take 𝑏 =∞. For a steady-state flow of water vapor onto or off of the droplet, the density of water
vapor is constant in time at every radius in the boundary layer. This means that the gradient of the water-vapor density
must go like 1/𝑟2 so that integrating over a spherical shell (whose area goes like 𝑟2) will give a flow of water vapor that
is independent of 𝑟; otherwise, there would be convergence or divergence of water vapor, violating the time invariance
of the vapor density. Since the diffusive flux of water vapor goes as 1/𝑟2, the water-vapor density 𝜌𝑣 must go like a
constant plus 1/𝑟. Given the known water-vapor densities at 𝑟 = 𝑎 and 𝑟 = 𝑏 =∞, this implies that

𝜌𝑣 (𝑟) = 𝜌𝑣 (∞) + 𝑎

𝑟

[
𝜌𝑣 (𝑎) − 𝜌𝑣 (∞)

]
. (1)

The outward radial diffusive flux is −𝑘𝑑𝜕𝜌𝑣/𝜕𝑟, where 𝑘𝑑 is the diffusivity of water vapor in air. Multiplying that flux
by 4𝜋𝑟2, we get a rate of water-vapor mass diffusing outward (evaporation if positive, condensation if negative) equal
to 4𝜋𝑘𝑑𝑎[𝜌𝑣 (𝑎) − 𝜌𝑣 (∞)]. To focus the discussion on condensation, we may take minus this expression, giving

rate of condensation onto a droplet = 4𝜋𝑘𝑑𝑎
[
𝜌𝑣 (∞) − 𝜌𝑣 (𝑎)

]
, (2)

which is proportional to the droplet’s radius 𝑎, not to the droplet’s surface area. Letting 𝑁 (𝑎) be the number per
volume of droplets with radii less than 𝑎, it follows that the condensation per volume in a cloud is proportional to
the “diameter concentration” (2

∫
𝑑𝑎 𝑑𝑁

𝑑𝑎
𝑎; Romps et al. 2023) or, equivalently, proportional to the “integral radius”

(
∫
𝑑𝑎 𝑑𝑁

𝑑𝑎
𝑎; Politovich and Cooper 1988; Korolev and Mazin 2003). The condensation is not proportional to the surface

area per volume (4𝜋
∫
𝑑𝑎 𝑑𝑁

𝑑𝑎
𝑎2).

For drops and larger droplets (diameters ≳100 𝜇m), sedimentation of the drop can thin the diffusive boundary layer,
leading to a 𝑏/𝑎 that cannot be treated as much larger than one. In fact, sedimentation will cause the thickness of
the boundary layer to depend on the angle from the stagnation point, but we can still gain valuable insight while
approximating the boundary layer as spherically symmetric. Repeating the derivation with general 𝑏, we get

rate of condensation onto a drop ≈ 4𝜋𝑘𝑑𝑎
𝛿+ 𝑎

𝛿

[
𝜌𝑣 (𝑏) − 𝜌𝑣 (𝑎)

]
, (3)

where 𝛿 ≡ 𝑏− 𝑎 is the thickness of the boundary layer and where we have used an approximate equality in a nod to
our continued assumption of spherical symmetry. For 𝛿 ≫ 𝑎, we recover equation (2) and the “proportional to radius”
scaling, as expected. On the other hand, if 𝛿 ≪ 𝑎, we get

rate of condensation onto a large drop ≈ 4𝜋𝑎2 𝑘𝑑
𝛿

[
𝜌𝑣 (𝑏) − 𝜌𝑣 (𝑎)

]
, (4)

and we see that the condensation rate is proportional to the surface area of the drop and inversely proportional to the
thickness of the diffusive boundary layer.

Equations (2–4) illustrate why the intuition from our macroscopic world does not apply to microscopic droplets.
For macroscopic objects — like a lake, a puddle, or even a large rain drop — the diffusive boundary layer is thin
compared to the size of the object, so the total diffusion of water vapor is proportional to the surface area divided by
the thickness of the diffusive boundary layer. For microscopic objects, the diffusive boundary layer is large compared
to the object, so the water vapor must diffuse through concentric shells of greatly varying area (from 4𝜋𝑏2 to 4𝜋𝑎2),
and that geometry causes the total diffusion rate to scale with the object’s linear size, not its area. For a more rigorous
treatment of the departures from “proportional to radius” or of the effective radius of a non-spherical object, see
discussions of ventilation factors and capacitance in Pruppacher and Klett (1978).
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It is important to emphasize that nothing written above is novel. As far back as a century ago, experiments showed
that a droplet evaporates at a rate in proportion to its radius (Morse 1910; Houghton 1933; Birdi et al. 1989). The
theoretical derivation of this phenomenon was first given by Maxwell (1877), although he did not draw attention to
the scaling with radius and did not apply the theory to droplets. Since then, the proportionality to radius has been
rederived independently at least twice (Langmuir 1918; Houghton 1933) and can now be found in textbooks (e.g.,
Johnson 1954; Fuchs 1959; Pruppacher and Klett 1978; Rogers and Yau 1989; McFarquhar 2022).

A counterargument to the “proportional to radius” result is that its derivation assumes a diffusive boundary layer
in steady state. In fact, anomalies in evaporation or condensation can scale like the droplet’s surface area for a short
period of time following an instantaneous disturbance. For example, consider a sudden change at 𝑡 = 0 in the droplet’s
temperature, which would alter the saturation vapor density at its surface. Immediately afterwards, the concentric
shell of water vapor affected by this disturbance, which grows diffusively, would have a thickness of

√
𝑘𝑑𝑡. For

√
𝑘𝑑𝑡

much less then the droplet radius 𝑎, the droplet’s spherical geometry does not influence the evolution, and so the
transient evaporation/condensation anomaly should, indeed, scale like 𝑎2 during this time period. But this time period
is fleeting. The transient signal starts to feel the spherical geometry once

√
𝑘𝑑𝑡 is comparable to 𝑎 (i.e., once 𝛿 ≈ 1),

which makes 𝑎2/𝑘𝑑 the timescale over which the condensation or evaporation transitions to scaling like 𝑎 instead of 𝑎2.
For 𝑘𝑑 = 2.5×10−5 m2 s−1 and 𝑎 in the range of 1–50 𝜇m, this gives a timescale of 0.04-100 𝜇s. These are timescales
that have no relevance to cloud dynamics. Therefore, for all practical purposes, the evaporation or condensation on a
small-to-medium-sized droplet may be treated as always proportional to its radius.

Consequently, the typical approach to modeling droplets is to use ordinary differential equations (ODEs), which
already assume that condensation and evaporation are proportional to the droplet radius (Howell 1949; Kraus and Smith
1949; Mordy 1959; Neiburger and Chien 1960; Korolev and Mazin 2003). Here, we will evaluate this approximation
numerically using a set of partial differential equations (PDEs) for the distribution of water vapor and temperature
around a condensing droplet.

2. Model

The governing partial-differential equations we will use here are

𝜕𝑡 𝜌𝑎 = −®∇ · (𝜌𝑎 ®𝑢) (5)

𝜕𝑡 𝜌𝑣 = −®∇ · (𝜌𝑣 ®𝑢) + 𝑘𝑑∇2𝜌𝑣 (6)

𝜕𝑡 (𝜌𝑎𝑐𝑣𝑎𝑇) = −®∇ · (𝜌𝑎𝑐𝑣𝑎𝑇 ®𝑢) − 𝑝 ®∇ · ®𝑢+ 𝑘𝑐∇2𝑇 , (7)

where 𝜕𝑡 is a shorthand for 𝜕/𝜕𝑡, 𝜕𝑟 is a shorthand for 𝜕/𝜕𝑟, 𝜌𝑎 is the density of dry air, ®𝑢 is the velocity of dry air,
𝑇 is the temperature, 𝑝 is the pressure, 𝑐𝑣𝑎 is the specific heat capacity of dry air at constant volume, and 𝑘𝑐 is the
thermal conductivity of air, taken here to be 2.5×10−2 W m−1 K−1. Table 1 summarizes the definitions of variables
and constants used in the main text of this paper.

The equations used here have an intermediate complexity compared to those used in previous studies. Equations
(5–7) are more complex than those of Vaillancourt et al. (2001) due to the inclusion convergence terms. Those
convergence terms allow the system to respond naturally to changes in pressure and also allow the droplet to grow in
size. But equations (5–7) are less complex than those used by Roy et al. (2024), which included governing equations
for momentum. Momentum plays no role in the scaling of water-vapor fluxes for stationary droplets, so there is no
need for momentum equations here.

Equations (5–7) provide three constraints (conservation of dry-air mass, water-vapor mass, and internal energy), but
there are six unknowns (𝜌𝑎, 𝜌𝑣 , 𝑇 , and three components of ®𝑢). Rather than adding a momentum equation, we impose
spherical symmetry, which sets two of the components of ®𝑢 to zero, and we set the pressure equal to an externally
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𝑎 radius of the droplet
𝑏 radius of droplet’s boundary layer & region of influence
𝑁 (𝑎) number concentration of droplets with radii less than 𝑎
𝑞𝑙 liquid-water mixing ratio of the cloud
𝜌𝑎 density of dry air
𝜌𝑣 density of water vapor
𝜌𝑙 density of liquid water 1000 kg m−3

𝑇 temperature
®𝑢 velocity of dry air
𝑢 radial speed of dry air
𝑅𝑎 specific gas constant of dry air 287.04 J kg−1 K−1

𝑐𝑣𝑎 specific heat capacity of dry air at constant volume 719 J kg−1 K−1

𝑐𝑝𝑎 specific heat capacity of dry air at constant pressure 𝑐𝑣𝑎 +𝑅𝑎

𝑅𝑣 specific gas constant of water vapor 461 J kg−1 K−1

𝑘𝑑 diffusivity of water vapor 2.5×10−5 m2 s−1

𝑘𝑐 thermal conductivity of dry air 2.5×10−2 W m−1 K−1

𝐿 latent enthalpy of evaporation Romps (2021)
𝑝∗𝑣 saturation pressure of water vapor Romps (2021)
𝜌∗𝑣 saturation density of water vapor 𝑝∗𝑣/𝑅𝑣𝑇
𝑆 supersaturation RH−1
𝑄 rate of latent heating for a single droplet

Table 1. Variables and constants used in the main text.

imposed 𝑝(𝑡). Therefore, the equation set becomes

𝜕𝑡 𝜌𝑎 = − 1
𝑟2 𝜕𝑟

(
𝜌𝑎𝑟

2𝑢
)

(8)

𝜕𝑡 𝜌𝑣 = − 1
𝑟2 𝜕𝑟

(
𝜌𝑣𝑟

2𝑢
)
+ 𝑘𝑑

𝑟2 𝜕𝑟

(
𝑟2𝜕𝑟 𝜌𝑣

)
(9)

𝜕𝑡 (𝜌𝑎𝑐𝑣𝑎𝑇) = − 1
𝑟2 𝜕𝑟

(
𝜌𝑎𝑐𝑣𝑎𝑇𝑟

2𝑢
)
− 𝑝

1
𝑟2 𝜕𝑟

(
𝑟2𝑢

)
+ 𝑘𝑐

𝑟2 𝜕𝑟

(
𝑟2𝜕𝑟𝑇

)
(10)

𝑅𝑎𝜌𝑎𝑇 = 𝑝(𝑡) , (11)

which provides four equations in four unknowns. Here, 𝑢 is the radial component of ®𝑢.
Before these equations can be integrated, we must specify the boundary conditions. We require: that the values of

𝑢 at the boundaries 𝑟 = 𝑎 and 𝑟 = 𝑏 match the speed of those boundaries; that the diffusive (conductive) fluxes of latent
(sensible) heat are zero at 𝑟 = 𝑏; that the density of water vapor equals its saturation value at 𝑟 = 𝑎; and that the fluxes
of latent and sensible heat are equal and opposite at 𝑟 = 𝑎. Mathematically, these are

𝑑𝑎

𝑑𝑡
= 𝑢(𝑎) = 𝑘𝑑

𝜌𝑙
𝜕𝑟 𝜌𝑣 |𝑟=𝑎 (12)

𝑑𝑏

𝑑𝑡
= 𝑢(𝑏) (13)

𝜕𝑟 𝜌𝑣 |𝑟=𝑏 = 0 (14)
𝜕𝑟𝑇 |𝑟=𝑏 = 0 (15)
𝜌𝑣 (𝑎) = 𝜌∗𝑣 [𝑇 (𝑎)] (16)

−𝑘𝑐𝜕𝑟𝑇 |𝑟=𝑎 = 𝐿𝑘𝑑 𝜕𝑟 𝜌𝑣 |𝑟=𝑎 , (17)

where 𝐿 is the latent enthalpy of evaporation (calculated at the initial temperature using the Rankine-Kirchhoff
approximations and then held constant for simplicity of integration; Romps 2021) and 𝜌∗𝑣 is the saturation density of
water vapor, taken to be the saturation vapor pressure 𝑝∗𝑣 from the Rankine-Kirchoff approximations (Romps 2021)
divided by 𝑅𝑣𝑇 . Equation (12) sets 𝑑𝑎/𝑑𝑡 to the growth in size of the liquid droplet, where 𝜌𝑙 is the density of liquid
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water. Equation (17) says that all of the latent heat released from condensation goes into the air, which is equivalent
to assuming the droplet has zero heat capacity.

This latter assumption is a good approximation because the heat capacity of a droplet is small compared to the heat
capacity of its surrounding air. To make this statement precise, let us consider, for simplicity, a monodisperse cloud
with uniformly distributed droplets. Inside this cloud, the ratio of a droplet’s mass to the mass of air closest to it equals
the cloud’s liquid-water mixing ratio 𝑞𝑙 , which takes typical values of 10−4 to 10−3. Even accounting for the fact
that the specific heat capacity of liquid water is four times larger than the specific heat capacity of dry air at constant
pressure, the heat capacity of the droplet is orders of magnitude smaller than the heat capacity of its surrounding air.
Therefore, the droplet’s heat capacity can be set to zero without any substantial loss of accuracy.

Let us define a droplet’s “region of influence” to be the air inside the cloud that is closest to it. For simplicity, we will
model that region of influence as spherical. Furthermore, since the thickness of the droplet’s diffusive boundary layer
𝑏 is much larger than the droplet’s radius 𝑎, we may model 𝑏 as though it were equal to the radius of influence. We can
do this for the same reason that we could earlier take 𝑏 to be infinite. Henceforth, we will model the droplet’s region of
influence as dominated by diffusion and conduction (as opposed to advection), letting 𝑏 represent both the thickness
of the diffusive boundary layer and the radius of the region of influence. Using 𝑏3 ≫ 𝑎3, the masses of a droplet and
its region of influence are 4𝜋𝜌𝑙𝑎3/3 and 4𝜋𝜌𝑎𝑏3/3, respectively. Since their ratio is 𝑞𝑙 , we get 𝑏 = 𝑎(𝜌𝑙/𝑞𝑙𝜌𝑎)1/3,
which allows us to initialize 𝑏 given an initial 𝑎 and 𝑞𝑙 .

Equations (8–17) govern the evolution of 𝜌𝑎 (𝑟, 𝑡), 𝜌𝑣 (𝑟, 𝑡), 𝑇 (𝑟, 𝑡), 𝑢(𝑟, 𝑡), 𝑎(𝑡), and 𝑏(𝑡). It is self-evident how to
evolve most of these in time, but it is less obvious for 𝑢. To solve for 𝑢, we can use 𝑝 = 𝑅𝑎𝜌𝑎𝑇 to rewrite 𝜌𝑎𝑐𝑣𝑎𝑇

in equation (10) in terms of 𝑝, which is independent of 𝑟, and rearrange to get an explicit expression for 𝜕𝑟 (𝑟2𝑢).
Integrating that expression in 𝑟 starting from 𝑎, we get the solution for 𝑢(𝑟, 𝑡),

𝑢(𝑟, 𝑡) = 𝑎2

𝑟2 𝑢(𝑎, 𝑡) −
𝑐𝑣𝑎

𝑐𝑝𝑎

𝑟3 − 𝑎3

3𝑟2
𝜕𝑡 𝑝

𝑝
− 𝑅𝑎

𝑐𝑝𝑎

𝑘𝑐

𝑝

(
𝜕𝑟𝑇 − 𝑎2

𝑟2 𝜕𝑟𝑇 |𝑟=𝑎
)
. (18)

For 𝑟 ≫ 𝑎, this gives

𝑢(𝑟, 𝑡) ≈ − 𝑐𝑣𝑎

𝑐𝑝𝑎

𝑟

3
𝜕𝑡 𝑝

𝑝
, (19)

where we have used the fact that 𝜕𝑟𝑇 ≈ 0 for 𝑟 ≫ 𝑎. Plugging this into the continuity equation for 𝜌𝑎 and integrating,
this tells us that 𝜌𝑎 ∝ 𝑝𝑐𝑣𝑎/𝑐𝑝𝑎 , which is the expected relationship between density and mass for adiabatic changes in
pressure.

In practice, the numerical integration of equations (8–17) is performed by splitting diffusion and advection into
sequential processes. In the diffusive process, the equations

𝜕𝑡 𝜌𝑣 =
𝑘𝑑

𝑟2 𝜕𝑟

(
𝑟2𝜕𝑟 𝜌𝑣

)
(20)

𝜕𝑡 (𝜌𝑎𝑐𝑣𝑎𝑇) =
𝑘𝑐

𝑟2 𝜕𝑟

(
𝑟2𝜕𝑟𝑇

)
(21)

𝜕𝑟 𝜌𝑣 |𝑟=𝑏 = 0 (22)
𝜕𝑟𝑇 |𝑟=𝑏 = 0 (23)
𝜌𝑣 (𝑎) = 𝜌∗𝑣 [𝑇 (𝑎)] (24)

−𝑘𝑐𝜕𝑟𝑇 |𝑟=𝑎 = 𝐿𝑘𝑑 𝜕𝑟 𝜌𝑣 |𝑟=𝑎 (25)

are integrated over a time step Δ𝑡 on an Eulerian grid with fixed 𝑎 and 𝑏.
At the end of that diffusive process, 𝑅𝑎𝜌𝑎𝑇 is, in general, not equal to 𝑝(𝑡) or 𝑝(𝑡 +Δ𝑡). In the advective process,

we move the grid-cell boundaries while conserving the air mass, water-vapor mass, and potential temperature of each
grid cell. The boundaries are moved such that 𝑎 matches the new size of the droplet and such that the air in each
grid cell is adiabatically compressed or expanded to a pressure of 𝑝(𝑡 +Δ𝑡). This calculation is a straightforward and
fast if the positions of the boundaries are updated sequentially from innermost to outermost. The updated 𝑎, 𝑏, and
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Fig. 1. Zooming into small radii and small time, results for the 𝑤 = 10 m s−1 simulation initialized with 𝑎 = 5 𝜇m, 𝑞𝑙 = 10−5, 𝑝 = 90 kPa,
𝑇 = 290 K, and 𝑆 = 0. Fields of (left) temperature, (middle) water-vapor density, and (right) supersaturation are shown for radii up to 50 𝜇m (which
is a small fraction of the initial region of influence of 𝑏 = 2261 𝜇m) and for time up to 0.4 s (amounting to 4 m of ascent).

intermediate grid boundaries define the Eulerian grid for the next time step. Therefore, although we start a simulation
with an initial 𝑎 and 𝑞𝑙 — which together define the initial 𝑏 — the 𝑎 and 𝑏 evolve as reflected in the actual movement
of the simulation’s grid-cell boundaries. For more details on the numerical implementation, see Appendix B.

In the next section, results are shown from two different types of simulations. In the first, the air is initialized with
a uniform temperature and a uniform positive supersaturation (i.e., 𝑆 > 0). In the second type of simulation, the air is
initialized with a uniform temperature and a uniform zero supersaturation (i.e., 𝑆 = 0) and then it is depressurized at
a rate corresponding to a chosen vertical velocity. The vertical velocity is converted to a change in pressure via the
hydrostatic relation using the average density of the simulated air and droplet.

3. Results

To provide a view of the simulation output, we first run a 400-s simulation that is initialized with a droplet of
radius 𝑎 = 5 𝜇m in air with a pressure, temperature, and relative humidity of 90 kPa, 290 K, and 1, respectively. The
liquid-water mixing ratio 𝑞𝑙 is initialized to 10−5, which, assuming the droplets are monodisperse, gives a radius of
influence of 𝑏 = 2261 𝜇m. The droplet and its region of influence are lifted at a constant vertical velocity 𝑤 of 10 m
s−1, which is converted to a rate of depressurization at each time step. At 10 m s−1 over 400 s, this simulation emulates
a cloud ascending adiabatically for 4 km.

Figure 1 zooms in to show the simulation output at small radius (0 to 50 𝜇m) and small time (0 to 0.4 s), with the three
panels showing, from left to right, the temperature, water-vapor density, and supersaturation. The depressurization
causes adiabatic changes in temperature far from the droplet: at a radius of 50 𝜇m, the temperature drops by just about
0.04 K, which is as expected for a dry-adiabatic ascent of 4 m. At a radius of 5 𝜇m, however, the temperature drops by
less than 0.02 K. This is not because of any thermal inertia of the droplet; recall that liquid water has been simplified
to have zero heat capacity. Instead, this is caused by the release of latent heat at the droplet surface. In the middle
panel of Figure 1, this condensation is reflected in the reduction of water-vapor density near the droplet surface. Due
to diffusion and conduction, those anomalies in temperature and water-vapor density are propagating outward. The
boundary condition on 𝜌∗𝑣 and the rapid action of diffusion keeps the supersaturation close to zero near the droplet’s
surface, as can be seen in the right panel of Figure 1.

Zooming out, Figure 2 shows the same fields plotted for all radii and the full ascent of 4 km. At this scale, the radial
gradients in temperature and water-vapor are not visible because they are so small compared to the changes with time.
Likewise, the 5-𝜇m droplet radius is not visible at the beginning of the simulation, but becomes perceptible later in
the simulation as the thin grey region; by 400 s, the droplet has grown to 𝑎 = 43 𝜇m.

Among the more noticeable features is the slant to the right edge of the data in the panels of Figure 2. This is caused
by the fact that the concentric layers of air expand as the air depressurizes, causing the radius of influence to increase
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Fig. 2. Same as Figure 1, but showing the fields over all radii for the full 400 s of simulation.

from 𝑏 = 2261 𝜇m to 𝑏 = 2605 𝜇m. Recall that the interfaces in the simulation are Lagrangian surfaces that move
with the dry air.

Note that the change in temperature deviates substantially from a dry-adiabatic lapse rate of 10 K km−1. Given the
ascent speed of 10 m s−1, this simulations covers 4 km of ascent, which would cause the temperature to decrease by
about 40 K in the absence of condensation. Instead, the temperature decreases by 20 K, which is a mean moist-adiabatic
lapse rate of 5 K km−1.

Finally, in the right panel of Figure 2, we see that the supersaturation peaks just below 6% at 20 seconds before
settling down under 3%. This is an extreme case chosen for illustration. Such large values of supersaturation result
from the high vertical velocity (10 m s−1), low cloud droplet number concentration (21 cm−3 initially, dropping to 13
cm−3 by the end of the simulation due to expansion of the air), and the fact that this model does not nucleate any new
droplets.

Recall that the standard ODEs for droplets assume condensation is proportional to the droplet radius. We can check
the accuracy of those ODEs using the PDEs presented here, which make no such assumption. Figure 3 shows, in its
black curves, a digitized replication of the time series of supersaturation from Figure 1a of Korolev and Mazin (2003),
which were made with the ODEs. The curves represent the mean supersaturation of a cloud initialized at 𝑡 = 0 with
𝑆 = 0 and 200 cm−3 of monodisperse droplets with 5-𝜇m radii, ascending at 0.25, 0.5, 1, and 2 m s−1. The blue curves
in Figure 3 are produced from integrating equation (14) of Korolev and Mazin (2003) — which combines two ODEs
into a single integro-differential equation — with the parameters used in this study. And, finally, the red curves are
made using this paper’s PDEs, where the representative supersaturation 𝑆 plotted here and in subsequent figures is the
mass of water vapor in excess of saturation in the droplet’s region of influence, i.e., (

∫ 𝑏

𝑎
𝑑𝑟 𝑟2𝜌𝑣)/(

∫ 𝑏

𝑎
𝑑𝑟 𝑟2𝜌∗𝑣) −1.

For the slow ascent speed of 0.25 m s−1 in Figure 3, the supersaturation adjusts to a quasi-steady value on a timescale
of a few seconds and remains approximately constant. For the fast ascent speed of 2 m s−1, there is an adjustment to
a quasi-steady supersaturation on the same time scale (Korolev and Mazin 2003), but that quasi-steady value declines
with time as the radius of the droplets grows: for a given condensation rate (imposed, e.g., by the rate of ascent), a
larger droplet means that a smaller supersaturation is needed to generate that rate. The good agreement between the
ODE and PDEs in Figure 3 validates the ODE approach to modeling supersaturation, which treats condensation as
proportional to the droplet radius.

To directly test whether condensation is proportional to droplet area or droplet radius, we can plot the time series
of a droplet’s latent heating 𝑄 (with dimensions of power) divided by either supersaturation times droplet area (𝑆𝑎2)
or by supersaturation times droplet radius (𝑆𝑎). Here, 𝑄 is 𝐿 times the rate of condensation onto the droplet, i.e.,
𝑄 = 4𝜋𝑎2𝐿𝑘𝑑 𝜕𝑟 𝜌𝑣 |𝑟=𝑎. In the two sets of experiments to be used for this test, the droplet and its surroundings are
initialized to a total pressure of 90 kPa and a temperature of 290 K, and the PDEs are integrated with a timestep of 1
ms.
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Fig. 3. Time series of mean supersaturation 𝑆 in a cloud initialized with 𝑆 = 0 and 200 cm−3 of monodisperse droplets with 5-𝜇m radii lifted
at 0.25, 0.5, 1, and 2 m s−1 that have been (black) digitized from Figure 1a of Korolev and Mazin (2003), (blue) calculated from equation (14) of
Korolev and Mazin (2003), and (red) calculated using this study’s model.

In the first set of experiments, there is no ascent (i.e., the pressure is held constant at 90 kPa), but the air is initialized
with a positive supersaturation. Therefore, the droplet and its environment draw the supersaturation down towards
zero while warming up the air by latent heating and growing the size of the droplet. Figure 4 shows the results of
these experiments for all eight combinations of initial conditions selected from 𝑎 = 5 or 50 𝜇m, 𝑆 = 1% or 10%, and
𝑞𝑙 = 10−5 or 10−4.

The left panel of Figure 4 plots time series of 𝑄/𝑆𝑎2. The black curves remain fairly constant in time because
their droplets (𝑎 = 50 𝜇m) and regions of influence are relatively large, which means that 𝑆, 𝑎, and 𝑄 do not change
appreciably in ten seconds. The red curves have droplets (𝑎 = 5 𝜇m) and regions of influence that are relatively small,
so their 𝑆, 𝑎, and 𝑄 do change appreciably in ten seconds, causing the red curves to vary noticeably. What is important,
however, is that all of these simulations (black and red combined) exhibit a wide range of 𝑄/𝑆𝑎2, which means that
there is no proportionality between latent heating and droplet area.

The right panel of Figure 4 plots time series of 𝑄/𝑆𝑎. Here, we see that the simulations rapidly converge to a
common value of 𝑄/𝑆𝑎 regardless of the initial conditions. This tells us that latent heating 𝑄 is proportional to
the droplet radius 𝑎, i.e., 𝑄 ∝ 𝑆𝑎. In fact, the value of 𝑄/𝑆𝑎 to which these simulations converge can be derived
analytically (see Text S5 of Romps et al. 2023). The expression is

𝑄

𝑆𝑎
= 4𝜋𝐿

[(
𝐿

𝑅𝑣𝑇
−1

)
𝐿

𝑘𝑐𝑇
+ 𝑅𝑣𝑇

𝑘𝑑 𝑝
∗
𝑣 (𝑇)

]−1
, (26)

which is about 3.6 W m−1 for 𝑇 = 290 K.
Figure 5 shows the second set of experiments, in which the supersaturation is initially zero, but there is ascent (i.e.,

the pressure decreases with time). These experiments are of the type that were shown in Figures 1 and 2. In the left
panel of Figure 5, we see again that there is no consistent relationship between latent heating and droplet area. In
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Fig. 4. For zero ascent and positive initial supersaturation, the time series of latent heating 𝑄 divided by either (left) 𝑆𝑎2 or (right) 𝑆𝑎. Time series
are shown for all eight combinations of initial conditions: 𝑎 = 5 or 50 𝜇m, 𝑆 = 1% or 10%, and 𝑞𝑙 = 10−5 or 10−4.

Fig. 5. For positive ascent and zero initial supersaturation, the time series of latent heating 𝑄 divided by either (left) 𝑆𝑎2 or (right) 𝑆𝑎. Time series
are shown for all eight combinations of 𝑎 = 5 or 50 𝜇m, 𝑤 = 1 m s−1 or 10 m s−1, and 𝑞𝑙 = 10−5 or 10−4.

the right panel, however, we see that the latent heating quickly snaps to a value of 𝑄/𝑆𝑎, implying a proportionality
between 𝑄 and 𝑎, i.e., 𝑄 ∝ 𝑆𝑎.

4. Discussion

It has been demonstrated here that the rate of condensation in a warm-phase cloud is proportional to the supersat-
uration times the sum of droplet radii, not the sum of droplet areas. Equivalently, we may say that the volumetric
condensation rate is proportional to the sum of droplet diameters per volume, which Romps et al. (2023) referred to as
the diameter concentration. This gives a diagnostic relationship, which can be thought of as holding instantaneously
so long as we can neglect the timescale over which droplets and their immediate surroundings adjust to each other. At
∼0.04-100 𝜇s, that timescale is safe to ignore when studying cloud dynamics.
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As with any diagnostic relationship, it is important not to overinterpret its causality. For example, given two clouds,
it is not generally true that the one with the higher diameter concentration will have the higher condensation rate. This
is because a cloud’s supersaturation adjusts as needed to ensure that the supersaturation remains quasi-steady. The
timescale for this adjustment is in the range of ∼0.1-10 s for typical warm-phase clouds (Squires 1952; Politovich and
Cooper 1988; Korolev and Mazin 2003). This has been called the “time of phase relaxation” (Korolev and Mazin
2003), but a more descriptive name might be the “supersaturation-adjustment timescale.” Consider, for example, a
cloud that suddenly starts rising at some speed. Beyond the supersaturation-adjustment timescale, there is a balance
between the declining mass fraction of water vapor caused by condensation and the decreasing saturation mass fraction
caused by cooling of the cloud; this occurs with whatever quasi-steady supersaturation is required to achieve the
balance. This is why the moist-adiabatic lapse rate is largely independent of the speed of ascent or the size distribution
of droplets. For most purposes, the moist-adiabatic lapse rate can be approximated as independent of those details.

Therefore, beyond the saturation-adjustment timescale of∼0.1-10 s, the condensation rate is set by the cloud’s vertical
velocity, not by its diameter concentration. In fact, in this quasi-steady limit, we can derive an explicit expression
for 𝑆 in which it is proportional to the product of the diameter concentration 2

∫
𝑑𝑎 𝑑𝑁

𝑑𝑎
𝑎 and the vertical velocity 𝑤

(Squires 1952). That approximation to the actual supersaturation is referred to as the quasi-steady supersaturation;
see Text S5 of Romps et al. (2023) for a derivation. Differences between the quasi-steady supersaturation and the
actual supersaturation are due, primarily, to uncertainties in whether the observed cloud has been in steady ascent
longer than the timescale of supersaturation adjustment. Since moist-convective updrafts – appropriately defined – live
much longer than the saturation-adjustment timescale, the quasi-steady supersaturation is a good proxy for the actual
supersaturation in numerical simulations (Romps et al. 2023) and has been relied on as a proxy for supersaturation in
observational studies (Warner 1968; Politovich and Cooper 1988; Prabha et al. 2011; Siebert and Shaw 2017; Romps
et al. 2023).

It is important to note that the validity of the quasi-steady supersaturation depends on the fact that latent heating is
proportional to the droplet radius, but the “proportional to radius” result does not depend on a cloud having achieved a
quasi-steady supersaturation. Whereas the quasi-steady supersaturation is a valid approximation to the supersaturation
only for ascent that has been steady longer than the saturation-adjustment timescale, the diagnostic relationship between
condensation, supersaturation, and the sum of droplet radii applies to all timescales of relevance to cloud dynamics.

Acknowledgments. This work was supported by the U.S. Department of Energy, Office of Science, Office of
Biological and Environmental Research, under Award Number DE-SC0025214.

Data availability statement. No empirical data were used in this study. The figures are generated using the equations
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APPENDIX A

Sedimentation and turbulence

The model presented here assumes that the air surrounding the droplet is stationary (aside from expansion and
contraction) with respect to the droplet. In reality, the surrounding air has some droplet-relative motion due to droplet
sedimentation and turbulent shear. Here, we show that the exclusion of these phenomena does not affect the primary
conclusions.

First, we can show that droplet sedimentation operates on a timescale that is long compared to the timescale over
which diffusion and conduction generate 𝑎 scaling of fluxes to the droplet. For Stokes flow, the terminal velocity of
the droplet is

𝑣𝑡 =
2
9
𝜌𝑙/𝜌𝑎 −1

𝜈
𝑔𝑎2 , (A1)

where 𝜈 = Sc 𝑘𝑑 ≈ 1.8×10−5 m2 s−1 is the kinematic viscosity and Sc = 0.71 is the Schmidt number for water vapor
in air. In the lower troposphere, this gives approximately

𝑣𝑡 = (108 m−1 s−1)𝑎2 . (A2)
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Fig. B1. Example of a one-dimensional finite-volume grid for the simulation of spherically symmetric three-dimensional diffusion and conduction
through 𝑁 = 3 concentric air layers.

To confirm that the droplet is in the regime of Stokes flow, we can calculate the Reynolds number Re = 2𝑎𝑣𝑡/𝜈. For
𝑎 = 1–50 𝜇s, this is about 10−5–1. Since this is less than or equal to one, Stokes flow is a good approximation. The
timescale for the droplet to fall a distance equal to its radius is then 𝑎/𝑣𝑡 = (10−8 m s)/𝑎. For 𝑎 = 1–50 𝜇m, this is a
timescale of 10,000–200 𝜇s. This can be compared to the timescale it takes to establish 𝑎 scaling, which, for 𝑎 = 1–50
𝜇m, was calculated to be 0.04–100 𝜇s in section 1. We see that the sedimentation timescale is much longer than
the timescale of adjustment to 𝑎 scaling. Therefore, droplet sedimentation would not alter the conclusions if it were
included in the model.

Second, we can show that the shear from turbulence operates on a lengthscale that is large compared to the droplet
radius 𝑎 and on a timescale that is long compared to the adjustment to 𝑎 scaling. For a high dissipation rate of turbulent
kinetic energy around 0.1 m2 s−3, the Kolmogorov microscale 𝜂 = (𝜈3/𝜀)1/4 is about 500 𝜇m, which is much larger
than the radii of small-to-medium droplets (𝑎 of 1–50 𝜇m). The Kolmogorov timescale is

√︁
𝜈/𝜀 ≈ 10 ms, which is

much longer than the timescale of adjustment to 𝑎 scaling, which we have calculated to be 0.04–100 𝜇s. Therefore,
turbulent shear would not alter the conclusions if it were included in the model.

APPENDIX B

Model integration

The radial coordinate 𝑟 has its origin at the center of the droplet, as depicted in Figure B1. The first grid interface
is at 𝑟 = 𝑟1 (𝑡) ≡ 𝑎(𝑡), where 𝑎 denotes the droplet’s radius. The outermost interface level is at 𝑟 = 𝑟𝑁+1 (𝑡) ≡ 𝑏(𝑡),
where 𝑁 is the number of concentric shells of air and 𝑏 is the radius of the droplet’s region of influence given by
𝑏 = 𝑎(𝜌𝑙/𝑞𝑙𝜌𝑎)1/3.

For simplicity, water is restricted to vapor and liquid only, and both phases are treated as having zero heat capacity.
Mathematically, the zero heat capacity of liquid water forces the fluxes of sensible and latent heat at the droplet surface
to be equal and opposite. Physically, we can think of the droplet as having a very low heat capacity with a temperature
(or, at least, skin temperature) that is equal to that of the air immediately around it.

In the model, the concentric shells of air around the droplet are labeled with integers 1 through 𝑁 , with shell 𝑖
bounded by interfaces 𝑖 and 𝑖+1, as depicted in Figure B1. Each shell 𝑖 has a temperature 𝑇𝑖 , dry-air density 𝜌𝑎,𝑖 , and
a water-vapor density 𝜌𝑣,𝑖 . The volume of shell 𝑖 is 𝑉𝑖 = (4𝜋/3) (𝑟3

𝑖+1 − 𝑟3
𝑖
) and the mass of dry air in shell 𝑖, given by

𝜌𝑎,𝑖𝑉𝑖 , is time-invariant. The flows of water vapor 𝐹𝑣,𝑖 and sensible heat 𝐹𝑇,𝑖 through interface 𝑖 are positive when
pointing in the direction of increasing radius.
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Recall that the time integration is split into a diffusive process (with diffusion of heat and moisture, but no movement

of grid interfaces) and an advective process (with no diffusion of heat and moisture, but the grid interfaces move to

equilibrate the pressure). The equations governing the diffusive process are

𝑉𝑖
𝑑𝜌𝑣,𝑖

𝑑𝑡
= 𝐹𝑣,𝑖 −𝐹𝑣,𝑖+1 (B1)

𝑉𝑖𝜌𝑎,𝑖𝑐𝑣𝑎
𝑑𝑇𝑖

𝑑𝑡
= 𝐹𝑇,𝑖 −𝐹𝑇,𝑖+1 , (B2)

where 𝑐𝑣𝑎 is the specific heat capacity of dry air at constant volume. The heat capacity at constant volume is used here

(instead of at constant pressure) because, within a single time step, the diffusion and conduction process is performed

at constant volume. The fluxes used here are

𝐹𝑣,𝑖 =


4𝜋𝑟2

1𝑘𝑑
𝜌∗𝑣 [𝑇1 (0) ]+𝜌∗′𝑣 [𝑇1 (0) ] {𝑇1−𝑇1 (0) }−𝜌𝑣,1

(𝑟2−𝑟1 )/2 𝑖 = 1
4𝜋𝑟2

𝑖
𝑘𝑑

𝜌𝑣,𝑖−1−𝜌𝑣,𝑖
(𝑟𝑖+1−𝑟𝑖−1 )/2 𝑖 ∈ [2, 𝑁]

0 𝑖 = 𝑁 +1 .
𝐹𝑇,𝑖 =


−𝐿𝐹𝑣,1 𝑖 = 1
4𝜋𝑟2

𝑖
𝑘𝑐

𝑇𝑖−1−𝑇𝑖
(𝑟𝑖+1−𝑟𝑖−1 )/2 𝑖 ∈ [2, 𝑁]

0 𝑖 = 𝑁 +1 ,
(B3)

where 𝐿 is the specific latent heat of evaporation and 𝑘𝑐 = 2.5× 10−2 W m−1 K−1 is the thermal conductivity of

air. Here, we have Taylor expanded the saturation water density 𝜌∗𝑣 (𝑇1) to first order in 𝑇1 with 𝑇1 (0) being, in the

numerical implementation, the initial value of 𝑇1 at the beginning of the time step.

The initial values of 𝑟𝑖 are chosen to be a stretched grid to resolve all of the relevant dynamics. There are 𝑁 = 40

shells in total with the first shell having a thickness of about 0.05𝑎. Because the grid spacing is so fine, these equations

cannot be solved using an explicit integration method without incurring a large computational cost. For example, a

grid spacing of 0.05𝑎 for 𝑎 = 5 𝜇m generates a diffusion timescale of (0.05𝑎)2/𝑘𝑑 = 2.5 ns. Since a nanosecond time

step is not practical, the system of equations is linearized at each time step, allowing the fast processes to be integrated

efficiently using matrix exponentiation. This is why the dependence of 𝜌∗𝑣 on temperature has been Taylor expanded

in the equations above.

Using 𝜌𝑣,𝑖 and 𝑇𝑖 as the prognostic variables, and stacking them into a vector 𝑋T = (𝜌𝑣 ,𝑇), the matrix equation is

𝑑𝑋

𝑑𝑡
= 𝐴𝑋 +𝐵 , (B4)
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where the nonzero elements of matrix 𝐴 are

𝐴1,1 = −8𝜋𝑘𝑑
𝑉1

(
𝑟2

1
𝑟2 − 𝑟1

+
𝑟2

2
𝑟3 − 𝑟1

)
(B5)

𝐴1,2 =
8𝜋𝑘𝑑
𝑉1

𝑟2
2

𝑟3 − 𝑟1
(B6)

𝐴1,𝑁+1 =
8𝜋𝑘𝑑
𝑉1

𝑟2
1

𝑟2 − 𝑟1
𝜌∗′𝑣 [𝑇1 (0)] (B7)

𝐴𝑖,𝑖−1 =
8𝜋𝑘𝑑
𝑉𝑖

𝑟2
𝑖

𝑟𝑖+1 − 𝑟𝑖−1
for 𝑖 ∈ [2, 𝑁 −1] (B8)

𝐴𝑖,𝑖 = −8𝜋𝑘𝑑
𝑉𝑖

(
𝑟2
𝑖

𝑟𝑖+1 − 𝑟𝑖−1
+

𝑟2
𝑖+1

𝑟𝑖+2 − 𝑟𝑖

)
for 𝑖 ∈ [2, 𝑁 −1] (B9)

𝐴𝑖,𝑖+1 =
8𝜋𝑘𝑑
𝑉𝑖

𝑟2
𝑖+1

𝑟𝑖+2 − 𝑟𝑖
for 𝑖 ∈ [2, 𝑁 −1] (B10)

𝐴𝑁,𝑁−1 =
8𝜋𝑘𝑑
𝑉𝑁

𝑟2
𝑁

𝑟𝑁+1 − 𝑟𝑁−1
(B11)

𝐴𝑁,𝑁 = −8𝜋𝑘𝑑
𝑉𝑁

𝑟2
𝑁

𝑟𝑁+1 − 𝑟𝑁−1
(B12)

𝐴𝑁+1,𝑁+1 = − 8𝜋𝑘𝑐
𝑉1𝜌𝑎,1𝑐𝑣𝑎

(
𝑘𝑑

𝑘𝑐
𝐿

𝑟2
1

𝑟2 − 𝑟1
𝜌∗′𝑣 [𝑇1 (0)] +

𝑟2
2

𝑟3 − 𝑟1

)
(B13)

𝐴𝑁+1,𝑁+2 =
8𝜋𝑘𝑐

𝑉1𝜌𝑎,1𝑐𝑣𝑎

𝑟2
2

𝑟3 − 𝑟1
(B14)

𝐴𝑁+1,1 =
8𝜋𝑘𝑐

𝑉1𝜌𝑎,1𝑐𝑣𝑎

𝑘𝑑

𝑘𝑐
𝐿

𝑟2
1

𝑟2 − 𝑟1
(B15)

𝐴𝑁+𝑖,𝑁+𝑖−1 =
8𝜋𝑘𝑐

𝑉𝑖𝜌𝑎,𝑖𝑐𝑣𝑎

𝑟2
𝑖

𝑟𝑖+1 − 𝑟𝑖−1
for 𝑖 ∈ [2, 𝑁 −1] (B16)

𝐴𝑁+𝑖,𝑁+𝑖 = − 8𝜋𝑘𝑐
𝑉𝑖𝜌𝑎,𝑖𝑐𝑣𝑎

(
𝑟2
𝑖

𝑟𝑖+1 − 𝑟𝑖−1
+

𝑟2
𝑖+1

𝑟𝑖+2 − 𝑟𝑖

)
for 𝑖 ∈ [2, 𝑁 −1] (B17)

𝐴𝑁+𝑖,𝑁+𝑖+1 =
8𝜋𝑘𝑐

𝑉𝑖𝜌𝑎,𝑖𝑐𝑣𝑎

𝑟2
𝑖+1

𝑟𝑖+2 − 𝑟𝑖
for 𝑖 ∈ [2, 𝑁 −1] (B18)

𝐴2𝑁,2𝑁−1 =
8𝜋𝑘𝑐

𝑉𝑁 𝜌𝑎,𝑁 𝑐𝑣𝑎

𝑟2
𝑁

𝑟𝑁+1 − 𝑟𝑁−1
(B19)

𝐴2𝑁,2𝑁 = − 8𝜋𝑘𝑐
𝑉𝑁 𝜌𝑎,𝑁 𝑐𝑣𝑎

𝑟2
𝑁

𝑟𝑁+1 − 𝑟𝑁−1
(B20)

and the only nonzero elements of 𝐵 are

𝐵1 =
8𝜋𝑘𝑑
𝑉1

𝑟2
1

𝑟2 − 𝑟1

{
𝜌∗𝑣 [𝑇1 (0)] − 𝜌∗′𝑣 [𝑇1 (0)]𝑇1 (0)

}
(B21)

𝐵𝑁+1 = − 8𝜋𝑘𝑐
𝑉1𝜌𝑎,1𝑐𝑣𝑎

𝑘𝑑

𝑘𝑐
𝐿

𝑟2
1

𝑟2 − 𝑟1

{
𝜌∗𝑣 [𝑇1 (0)] − 𝜌∗′𝑣 [𝑇1 (0)]𝑇1 (0)

}
. (B22)

In the advective process, 𝑟1 (a.k.a., 𝑎) is updated to make the radius of the droplet consistent with its new mass

(based on the amount of water vapor diffused to or away from the droplet in the diffusive process). Then, 𝑟2 is updated
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(while conserving the masses and potential temperature of the air in that first concentric shell) to give a pressure in the
first concentric shell equal to the externally specified pressure. This step is repeated, sequentially, for 𝑟3 to 𝑟𝑁 (a.k.a.,
𝑏), at which point the time step is complete.
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