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L E T T E R T O T H E E D I T O R

The Rankine–Kirchhoff approximations for
moist thermodynamics

Recently in this journal, Ambaum (2020) derived an
expression for the saturation vapor pressure using three
approximations: ideal gas, constant heat capacities, and
zero specific volume of condensates. In so doing, Ambaum
joined a great number of researchers, myself included,
who have derived this expression independently with
incomplete awareness of previous such work. To save oth-
ers the trouble of reinventing the wheel, a brief history
and overview of the Rankine–Kirchhoff equation is given
below.

The first breakthrough in quantifying the saturation
vapor pressure occurred at the beginning of the 19th cen-
tury. Around that time, Dalton had discovered that the
saturation vapor pressure for water is roughly exponen-
tial in temperature. When the temperature is raised suc-
cessively by equal increments, Dalton (1802) noted that
“there appears something like a geometrical progression
in the forces of vapour; the ratio however, instead of being
constant, is a gradually diminishing one.” Thus, to first
approximation, we can capture the “geometrical progres-
sion” by writing the saturation vapor pressure p∗

v as

log p∗
v = A + BT , (1)

where T is the temperature and A and B are constants.
While this is suitable for small temperature intervals,
it does not capture the “gradually diminishing ratio”.
Throughout the 19th century, well over a dozen empir-
ical expressions were proposed for the saturation vapor
pressure, all striving to account for that diminishing ratio.
Among them was the popular empirical expression

log p∗
v = A + BT

1 + CT
, (2)

which replaced B with B∕(1 + CT) to emulate a
quasi-exponential dependence on T in which the frac-
tional change of p∗

v per temperature increment (i.e., the
ratio minus one) decreases with warming. This form
for p∗

v was proposed simultaneously and independently
by August (1828) and M. Roche (the 1828 memoir has
been lost to time, but it is discussed by Avogadro, 1833;
Russell, 1841; Barlow, 1845; Alexander, 1849; Callendar,
1911). Although first proposed by August and Roche,

atmospheric scientists most often refer to this as the
“Magnus formula” (in reference to Magnus, 1844) or the
“Tetens equation” (in reference to the particular constants
advocated by Tetens, 1930). While the 1 + CT term does
generate a “diminishing ratio”, it is important to note
that it had no theoretical justification: it was simply a
convenient way to fit the data.

It turns out, however, that we can capture the “di-
minishing ratio” with an analytic expression derived from
first principles using some simplifying approximations. If
water vapor can be approximated as an ideal gas, and
if the temperature dependence of heat capacities can be
ignored, and if the specific volumes of condensates can
be treated as zero, then equating the Gibbs free energy
of water vapor to that of the relevant condensed phase
(either liquid or solid) yields a saturation vapor pressure of
the form

log p∗
v = A + B∕T + C log T . (3)

Alternatively, defining p∗
v0 to be the value of p∗

v when T =
T0, this can then be written as

log
(

p∗
v∕p∗

v0
)
= B (1∕T − 1∕T0) + C log(T∕T0) . (4)

A convenient choice for T0 is the triple-point tempera-
ture, since that makes p∗

v0 the same whether we are talking
about saturation with respect to liquid or saturation with
respect to solid. Instead of B and C being empirical values,
their values are given by the derivation in terms of the fun-
damental physical properties of the phases of water, such
as the heat capacities and internal energies.

The expressions for B and C depend on whether we
have calculated the thermodynamic equilibrium between
vapor and liquid or between vapor and solid. Substituting
the relevant values and exponentiating, we find that the
saturation vapor pressures with respect to liquid p∗,l

v and
with respect to solid p∗,s

v are

p∗,l
v = p∗,l

v0

(
T
T0

)(cpv−cvl)∕Rv

× exp
[

E0v − (cvv − cvl)T0

Rv

(
1

T0
− 1

T

)]
,
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p∗,s
v = p∗,s

v0

(
T
T0

)(cpv−cvs)∕Rv

× exp
[

E0v + E0s − (cvv − cvs)T0

Rv

(
1

T0
− 1

T

)]
, (5)

where cvv, cvl, and cvs are the specific heat capacities at
constant volume for vapor, liquid, and solid; cpv equals
cvv + Rv; Rv is the specific gas constant for vapor; E0v is the
difference in specific internal energy between water vapor
and liquid water at T0; and E0s is the difference in specific
internal energy between liquid water and solid water at T0.
Noting that the specific latent enthalpies of evaporation Le
and sublimation Ls are

Le(T) = E0v + RvT + (cvv − cvl)(T − T0), (6)

Ls(T) = E0v + E0s + RvT + (cvv − cvs)(T − T0) , (7)

the vapor pressures can be written in terms of Le and Ls
(Rao, 1957; Novikov, 1976; Bogillo and Staszczuk, 1999;
Smith, 2002; Ambaum, 2020) as

p∗,l
v = p∗,l

v0

(
T
T0

)(cpv−cvl)∕Rv

exp
(

Le(T0)
RvT0

− Le(T)
RvT

)
,

p∗,s
v = p∗,s

v0

(
T
T0

)(cpv−cvs)∕Rv

exp
(

Ls(T0)
RvT0

− Ls(T)
RvT

)
. (8)

Returning to the history, it turns out that Equation 3
was originally derived, from first principles, by Kirchhoff
(1858). Eight years later, Rankine (1866) derived the same
expression independently, making the dependence on the
heat capacities explicit as in Equation 5. Three years after
that, Dupré (1869) derived Equation 3 independently on
the basis that the latent enthalpy is linear in tempera-
ture, but did not relate the constants to heat capacities.
These works were published in German, English, and
French, respectively, which may explain why Rankine was
unaware of Kirchhoff’s work, and Dupré unaware of both
Kirchhoff’s and Rankine’s.

The fact that these works were published in different
languages and different countries likely also explains why
the equation has been referred to by a bewildering array of
names:
• Rankine–Kirchhoff (Cornelissen and Waterman, 1956;

Biddiscombe and Martin, 1958; Waldenstrøm and
Stølevik, 1980; Mishra and Yalkowsky, 1991; Yalkowsky
and Mishra, 1991; Griesser et al., 1999; Lobo and Fer-
reira, 2001; Wisniak, 2001; Smith, 2002; Tetko, 2007),

• Kirchhoff–Rankine (Laby, 1908b; Bradley and
Swanwick, 1958; 1959; Davies and Taylor, 1964; Miller,
1964; 1966; Mazdiyasni et al., 1967; Roder, 1977),

• Kirchhoff–Rankine–Dupré (Laby, 1908a; Smith and
Menzies, 1910; Menzies, 1919; Kaye and Laby, 1921;
Hine, 1924; Emmet, 1925; Holm, 1933; Gottschal
and Korvezee, 1953; Jobson, 1973; Novikov, 1976;
Wilcox and Bauer, 1991; Bogillo and Staszczuk, 1999;
Mianowski and Urbańczyk, 2017),

• Rankine–Dupré (Cragoe et al., 1920; Peirce, 1929),
• Dupré–Rankine (Juliusburger, 1900; Bittrich et al.,

1962; Siedler et al., 1969; Schmeling and Strey, 1983),
and

• Kirchhoff–Dupré–Rankine (Le Fèvre and Tideman,
1931).

Rankine’s name is included in nearly all references
because he derived Equation 5 with an explicit dependence
on heat capacities (see equation B of Rankine, 1866), and,
understandably, Kirchhoff is included in the vast majority
of references since he was the first to derive the equation.
On the other hand, Dupré is often omitted because he
published third and, while he derived Equation 3, he
did not express the coefficients in terms of heat capac-
ities. It is arguable, therefore, that Equation 5—and
all equivalent presentations such as Equation 8—should
be referred to as either the Rankine–Kirchhoff or the
Kirchhoff–Rankine equation. Of those two, modern usage
favors Rankine–Kirchhoff, so that is the term I use here.

The three independent derivations in the mid-1800s
were the first to be published, but they were not the
last. Even as early as 1900, it was remarked that the
same derivation had likely been repeated indepen-
dently “von einer grosseren Zahl von Forschern” (“by a
large number of researchers”: Juliusburger, 1900). One
example is Hertz (1882), who derived the expression
without making any reference to Rankine, Kirchhoff,
or Dupré and was, therefore, likely unaware of those
results. Adding to the confusion, some later authors
have referred to the Rankine–Kirchhoff equation as
Kirchhoff–Rankine–Dupré–Hertz (Menzies, 1927),
Rankine–Kirchhoff–Dupré–Hertz (Miles and Men-
zies, 2002), and even Dupré–Hertz (Pospielow, 1907).
In the 20th century, several textbooks derived the
Rankine–Kirchhoff equation without giving it a name or
referencing the literature (e.g., Emanuel, 1994; Bohren
and Albrecht, 1998), so it is unclear if those were indepen-
dent derivations or if, in the common style of textbooks,
the references to the original literature were simply omit-
ted. Another example is the textbook of Holmboe et al.
(1945), which derived the expression, but referenced nei-
ther Rankine nor Kirchhoff. Instead, it incorrectly referred
to the equation as the Magnus formula. Unfortunately, the
misattribution to Magnus (1844) spread from Holmboe
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et al. (1945) to several other publications (Parish and
Putnam, 1977; Baldus et al., 2015; Sarkar, 2015; Sanger
and Kirkpatrick, 2017; Frasca et al., 2018).

In 2008, I was unaware of this literature and the
textbook derivations, but I used the same approxima-
tions as Rankine and Kirchhoff in developing the govern-
ing equations for my cloud-resolving model (Das Atmo-
sphärische Modell: DAM) and for studying its entropy
budget (Romps, 2008). By equating the Gibbs free ener-
gies of vapor and condensates, I derived the same p*,l

v and
p*,s

v that had been derived, unbeknownst to me, exactly
150 years earlier by Kirchhoff (1858). I did not claim any
novelty in having derived them, but I also did not search
the literature to see if they had a name. It was just this
year that I encountered Parish and Putnam (1977), who
derived the same equations and erroneously attributed
them to Magnus, which led me to pull on the thread of
history. In the process of doing so, I came across Ambaum
(2020), which convinced me that this history was worth
sharing.

Unlike many other works, Ambaum (2020) made clear
that the equation he derived had been derived before.
Indeed, Ambaum (2020) cited several recent textbooks
that gave derivations of it, including Ambaum (2010),
although neither Ambaum (2020) nor any of those text-
books referred to the Rankine–Kirchhoff equation by its
name. It is also worth noting that the derivation used by
Ambaum (2020), which was to equate the Gibbs free ener-
gies of vapor and condensate, is the same method that was
used to derive the Rankine–Kirchhoff equation by Gibbs
himself (see the extended footnote beginning on page 152
of Gibbs, 1906).

Finally, there is an argument to be made that Rank-
ine (1866) and Kirchhoff (1858) should be remembered
not just for their saturation vapor-pressure equation, but
also for how they derived it. They employed three power-
ful approximations: that the vapor behaves as an ideal gas;
that the heat capacities are independent of temperature;
and that the specific volumes of condensed water can be
treated as zero for the purposes of thermodynamic calcu-
lations. These approximations may not be good choices for
the wide range of conditions encountered in engineering
applications, but they are perfectly suitable for the study
and modeling of moist thermodynamics in Earth’s atmo-
sphere (Parish and Putnam, 1977; Romps, 2017; Ambaum,
2020). These approximations lead not only to an accurate
and analytic expression for the saturation vapor pressure:
they also lead more broadly to a whole system of accu-
rate and analytic expressions relevant to the atmosphere,
including the equivalent potential temperature (Hauf and
Höller, 1987; Emanuel, 1994; Romps and Kuang, 2010),
the quantity conserved by an adiabatically lifted parcel
(Romps, 2015), the lifting condensation level (Romps,

2017), the dew point (Romps, 2021), and more. Since these
three approximations are so powerful, and so worthy of
being more widely known, I propose they be given a name.
In recognition of those who first put them to notable
use, a fitting candidate would be the “Rankine–Kirchhoff
approximations”.
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