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ABSTRACT: An isolated source of surface buoyancy, be it a campfire or burning city, gives rise to a turbulent plume.
Well above the surface, the plume properties asymptote to the well-known solutions of Morton, Taylor, and Turner
(MTT), but a closure is still lacking for the virtual origin. A closure for the virtual origin is sought here in the case of a
turbulent plume sustained by a circular source of surface buoyancy in an unstratified and unsheared fluid. In the high-
Reynolds-number limit, it is argued that all such plumes asymptote to a single solution. Direct numerical simulation (DNS)
of this solution exhibits a virtual origin located a distance below the surface equal to 1.1 times the radius of the buoyancy
source. This solution is compared to the previously used assumption that the MTT plume is fully spun up at the surface,
and that assumption is found to give buoyancies that are off by an order of magnitude. With regards to the citywide
firestorm triggered by the nuclear attack on Hiroshima, it is found that the spun-up-at-surface MTT solution would have
trapped radioactive soot within about a hundred meters of the surface, whereas the DNS solution presented here corrobo-
rates observations of the plume reaching well into the troposphere.
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1. Introduction

In the presence of gravity, a steady isolated heating at the
bottom of an unstratified fluid will produce a plume: a buoy-
ant column of rising fluid whose steady shape is maintained
(in spite of its ascent) by the entrainment of surrounding fluid.
A pleasant and familiar example is the turbulent and smoky
plume generated by a campfire. A decidedly less pleasant
example is the plume generated by a city-sized fire ignited by
a nuclear weapon. This latter case, with its attendant threat of
stratospheric soot injection and climate perturbation, moti-
vates the objective of this paper: to characterize the near-sur-
face spinup of such plumes.

For the sake of simplicity, we focus here on buoyancy-
driven plumes in an unstratified fluid initially at rest, or in
cases where the background flow is small enough to have a
negligible effect on the plume’s gross characteristics. Aside
from the surface fire, we assume there are no diabatic sources
of heat. In the atmosphere, this means that the air is taken to
be dry; i.e., we focus on the dynamics of plumes below their
lifting condensation level.

Morton et al. (1956, hereafter MTT) established the foun-
dational closure for plumes far from their source of buoyancy
in a neutral Boussinesq fluid: by dimensional analysis, MTT
postulated that the plume’s turbulent mixing length is propor-
tional to the plume’s width. As reviewed in Turner (1986),
numerous experiments in the laboratory (Carazzo et al. 2006),
flows in nature (Woods 2010), and numerical simulations
(Devenish et al. 2010) have tested the MTT theory and found
close agreement. Subsequent work has built on this founda-
tion, analyzing plumes in more complex settings, such as non-
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Boussinesq fluids (Rooney and Linden 1996) and stratified
environments (Woods 2010).

For many applications, motion far above the source is of
primary interest (e.g., Carazzo et al. 2006; Table 1). Near the
source, however, the flow is manifestly different from the
canonical MTT plume: a horizontal circulation converges fluid
over the source, mixes in environmental air, and launches the
fluid upward. If we wish to predict the fate of the buoyant
fluid (e.g., its eventual level of neutral buoyancy), we must be
able to predict the height at which the plume has largely tran-
sitioned to an MTT regime, as well as the plume’s buoyancy,
width, and vertical velocity at that height.

At present, there is no rigorous theory for the near-surface
dynamics of buoyancy-driven plumes. Indeed, our search of
the literature turned up neither empirical data on nor well-
resolved simulations of the near-surface flow in response to
an isolated heating at a no-slip lower boundary. Absent the
requisite data or theory for the spinup layer, some researchers
have resorted to the ad hoc practice of initializing the MTT
plume as fully spun up at the surface with the full radius of
the source (Freitas et al. 2007; Paugam et al. 2016) while
others have neglected the source’s radius entirely (Penner
et al. 1986; Carrier et al. 1985; Manins 1985), modeling the
plume’s source as point-like at the surface. By neglecting the
spinup boundary layer entirely, both of these initializations
have the nonphysical consequence of w # 0 at the surface—a
mismatch that may play a role in why wildfire plume predic-
tions compare poorly to observations (Paugam et al. 2016).

In the MTT solution, the turbulent plume has the shape of
a cone. At the vertex of the cone, the radius of the plume is
zero and the buoyancy and vertical velocity are infinite. Of
course, no plume in reality has such a vertex, but real plumes
(in unstratified, unsheared fluids) do asymptote to the MTT
solution sufficiently far above their heating source. At those
heights, the plume is fully characterized by only two quantities:
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TABLE 1. Comparison of z, across prior work. See text for discussion. Fontaine et al. (2006) reports —2.2R and —1.2R for domain
ventilation velocities of 0.15 and 0.02 m s™', respectively. Least squares fit to data in Fig. 1 of Plourde et al. (2008) yields the
reported z,. Since the simulation of Plourde et al. (2008) appears not to have been DNS,; it is not possible to calculate its Reynolds

number.

Type Surface fluxes BC Re Z, (R)
Devenish et al. (2010) LES Buoyancy No slip — -1.4
Fontaine et al. (2006) LES Buoyancy Free slip 20000 —22o0r —1.2
Plourde et al. (2008) DNS Buoyancy, momentum noise No slip — —22
Bouzinaoui et al. (2007) Heated air Buoyancy Free slip 20000 -2
Kofoed and Nielsen (1990) Heated air Buoyancy Free slip 100 —0.88
Elicer-Cortés (1998) Heated air Buoyancy Free slip 800 —0.86
Kaye and Hunt (2009) Saltwater Buoyancy, volume, momentum Free slip — -2
Colomer et al. (1999) Saltwater Buoyancy, volume, momentum Free slip 4000 -1.6
Ciriello and Hunt (2020) Theory Buoyancy-only limit — — —3.34
Hunt and Kaye (2001) Theory Buoyancy-only limit — — 0.0

the buoyancy source rate and the location of the vertex of the
best-fit cone, which is called the virtual origin. The two ad hoc
initializations described above differ only in their choice of vir-
tual origin. When initializing a plume as emanating from a
point at the surface, the height of the virtual origin z, is zero.
For the spun-up-at-surface plume, whose width at the surface
equals the width of the surface buoyancy source, z, < 0. In
either case, however, the only other parameter—the buoyancy
source rate—is set to the actual rate. Therefore, to model real
plumes far above the surface, what is needed is a closure for
the virtual origin.

Although a great number of papers have been written
about plumes, we were unable to find any closure in the litera-
ture for the virtual origin of a plume with the following three
properties relevant to real-world fires: a plume that has
1) well-resolved turbulence and that is 2) sourced only by
buoyancy at a 3) no-slip surface. To fill that gap, we present
here a closure for the virtual origin of such plumes using
direct numerical simulations in two and three dimensions. To
illustrate the importance of using the correct virtual origin, we
will estimate the level of neutral buoyancy of the Hiroshima
nuclear firestorm plume using the new closure and, for com-
parison, the commonly used spun-up-at-surface closure.
Before we begin, however, let us briefly review some of the
prior literature to see the ways in which conditions 1, 2, and 3
have been missing from previous studies.

Two theoretical predictions have been made for the virtual
origin of a plume driven by a circular source of buoyancy.
Those calculations used turbulence closures to derive analytic
solutions for a buoyancy-driven plume that is initialized by a
finite-area circular source rather than a point source (as is the
case for the MTT plume). The turbulence closure adopted by
Hunt and Kaye (2001) modeled the plume’s fractional
entrainment rate as a/r, where r is the plume’s radius and « is
the same dimensionless constant found empirically for far-
field plumes (see the discussion of « in section 2). That closure
leads to an analytic solution with a virtual origin at the same
height as the circular source of buoyancy. Ciriello and Hunt
(2020) replaced « with a linear function of the plume’s
Richardson number and found an analytic solution (their
I’y — o solution) in which the virtual origin is located below

the physical source of buoyancy by a distance of about
3.34 times the physical source’s radius. The accuracy of these
predictions is uncertain given their dependence on simplified
approximations of the plume dynamics.

Three types of empirical approaches have been dominant in
plume studies: water-tank experiments, heated-air experi-
ments, and numerical simulations. In the water-tank experi-
ments (Colomer et al. 1999; Friedl et al. 1999; Epstein and
Burelbach 2001; Kaye and Hunt 2009), it has been common to
pump salty water into a freshwater tank, initializing the near-
source fluid with both mass and momentum in addition to
buoyancy, thereby violating condition 2. Compounding the
problem, few eddies were present in the above experimental
near-source flows (see Figs. 1 and 2 of Kaye and Hunt 2009)
suggesting laminar growth (Friedl et al. 1999). Therefore, these
water-tank experiments do not satisfy conditions 1 and 2.

In the heated-air experiments, the plumes are typically gen-
erated by a heated metal disk. However, the majority of these
studies placed the disk atop a cylinder (e.g., Bouzinaoui et al.
2007; Fontaine et al. 2006; Vuong Pham et al. 2005; Popiolek
et al. 1998; Elicer-Cortés 1998; Kofoed and Nielsen 1990),
producing a free-slip flow rather than condition 3 of a no-slip
surface. Kuznetsov et al. (2019) and Mahmoud et al. (2009)
enforced the no-slip boundary condition by heating metal
disks embedded in a lower surface, but these studies did not
compute the virtual origin nor present data from which the
virtual origin can be inferred.

Numerical simulations have also investigated plumes evolv-
ing from a circular heat source (Devenish et al. 2010; Fontaine
et al. 2006; Plourde et al. 2008). The large-eddy simulations of
Devenish et al. (2010) used a horizontal resolution that was
appropriate for the far-field dynamics, but coarse compared to
the source’s width, and so did not meet condition 1 of having
well-resolved turbulence. The simulated plume of Fontaine
et al. (2006) had a free-slip elevated source and so did not meet
condition 3. Finally, Plourde et al. (2008) performed higher-
resolution simulations of a plume fed by a circular source of
buoyancy at a no-slip surface, but found an “unrealistically
laminar” plume, which was then made to be approximately tur-
bulent by continuously adding white noise to the near-surface
vertical velocity. This suggests that, despite the high reported
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Reynolds number of 3055, this simulation did not satisfy condi-
tion 1 of having well-resolved turbulence. Furthermore, Plourde
et al. (2008) reported that the “disturbance added to the flow
close to the heat source is an important parameter that controls
the onset and location of transition [from a laminar to a turbu-
lent state].” In section 3, we argue that the resolution in Plourde
et al. (2008) was not sufficient to directly resolve dissipation at
the Kolmogorov microscale, which is required for a direct
numerical simulation to perform properly.

2. Theory

In this section, we will review the MTT solutions, the sensi-
tivity of those solutions to the virtual origin, and the high-
Reynolds-number limit.

a. Review of MTT

Our results build on the foundational theory of convec-
tive plumes put forth by MTT, which we now review. MTT
formulates bulk conservation equations for a plume’s vol-
ume, momentum, and buoyancy fluxes in an unstratified
Boussinesq fluid. In doing so, the environment is taken to
have zero vertical momentum, and buoyancy is assumed to
be the dominant force. In a neutrally buoyant fluid, the
MTT equations read

d
d—z(rzw) = 2ru,, (1)
d 2y —
a(rzw ) = r*b, ()
Pwb = Q = constant, 3)

where the plume is described by radius r, buoyancy b, and
vertical velocity w. By convention, Q is the buoyancy source
divided by a factor of 7. Turbulent entrainment of environ-
mental air into the plume is quantified by the entrainment
velocity u,.

The MTT turbulence closure is ©, = aw for some dimension-
less constant «.. This closure stems from the reasonable guess that
the sizes and speeds of the eddies responsible for entrainment
scale with the size and speed, respectively, of the plume itself.
Given this closure, the equations admit an analytical solution for
the case in which the buoyancy source is located at a point,

6«

r= ?(z - Zu), (4)
5173

W= o QR )
20173 _

b= Q*Pr 38, (6)

In this solution, the buoyancy source is located at r = 0 and
z = z,. This point is referred to as the virtual origin. Away
from the surface, real plumes asymptote to an MTT solution
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(with Q set by the physical buoyancy source) but with a vir-
tual origin that is, in general, not located at the surface. Geo-
metrically, z, marks the apex of the cone swept out by the
plume far above the surface. While fundamental to the solu-
tion, the MTT theory does not predict z, and does not
attempt to describe the near-surface dynamics. In this respect,
real plumes remain an unsolved problem: a closure is needed
for the virtual origin.

b. The virtual origin

In laboratory and numerical studies, the virtual origin is fit
ex post facto to experiments (e.g., Carazzo et al. 2006, and
references therein). Table 1 collects prior measurements. The
relevance of these past experiments to atmospheric plumes,
however, is unclear, as no past experiment has satisfied condi-
tions 1, 2, and 3 described above. Lacking solid experimental
footing, predictive studies on atmospheric plumes have relied
on the ad hoc practice of ignoring the spinup layer altogether.
Some authors assume the plume is fully spun up at z = 0 with
radius equal to the radius R of the patch of surface heating
(usually taken to be a circle): enforcing this spun-up-at-
surface condition on r(z) requires that the virtual origin be
placed at z, = —5R/6a = —9R (Paugam et al. 2016; Freitas
et al. 2007), given the canonical a ~ .1 (Carazzo et al. 2006).
Other authors make the ad hoc choice of placing the virtual
origin at the surface by setting z, = 0 (Penner et al. 1986;
Carrier et al. 1985).

To determine whether these choices of z, are consequen-
tial, we note that b(z, z,) « (z — z,) >° and compute the
ratio,

b(z,z,=0) ( . 9_1?)5/3 o
b(z,zo= —9R) z)

If we are interested in the plume’s buoyancy at heights com-
parable to the horizontal extent of the buoyancy source, then
we could plug z = R into this expression. This yields a buoy-
ancy ratio of 46. Thus, the choice of initialization has immense
consequences for the plume’s height of neutral buoyancy and,
in the case of an urban firestorm, how much climate-altering
soot reaches the upper atmosphere. If the virtual origin is not
particularly sensitive to relaxing conditions 1, 2, and 3, then
prior experimental work on related plumes is relevant, and
suggests z, = 0 is a more plausible assumption in light of the
data in Table 1. Given the array of varied and conflicting initiali-
zations, we seek to definitively establish the plume’s virtual ori-
gin for the case of interest with direct numerical simulations.

¢. The turbulent limit

The success and broad applicability of the MTT theory rests
on the observation that fully developed plumes appear to
exhibit a nearly universal rate of change in radius with respect
to height, independent of the experimental setup or fluid com-
position. This growth rate, captured by the entrainment rate «,
is found to be close to 0.1 in a wide range of experiments (as
reviewed in Carazzo et al. 2006). Scorer (1957), who first noted
this invariance, hypothesized the existence of a universal self-
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similar solution that all plumes converge toward after turbu-
lence dominates the flow.

For a neutral Boussinesq fluid, the flow is governed by the
nondimensional Reynolds number Re and the Prandtl number
Pr, and Scorer’s hypothesis implies that the large-scale fea-
tures of the plume should converge to a single asymptote as
Re increases, independent of Pr. Indeed, turbulent experi-
ments with differing Pr (e.g., plumes in water versus air) dem-
onstrate similar entrainment rates (Carazzo et al. 20006).

In this study, we perform direct numerical simulations that
allow us to explicitly set the nondimensional parameters and
explore this high-Re convergence. To fix terms and define the
nondimensional parameters, we study plumes that are solutions to
the Boussinesq equations for an unstratified, incompressible fluid,

du+ (u-Vyu= *V(ﬂ) + be, + W, ®)
Po
ab +u-Vb = kV?b, 9)

V-u=0, (10)
where u = (u, v, w) is the velocity, v is the kinematic viscosity,
and « is the thermal diffusivity. With a constant buoyancy flux
F within radius R, the boundary conditions are

_|-F/x r=R
=0 0 r>R’

ab

u,_, =0 —
|z—0 GZ

(11)

where r = +/x2 + y2. Casting the equations in nondimen-
sional form, we introduce dimensional scales B = F??R™3,
U= FPR" T =FR*” and P = F"°R*”. Denoting non-
dimensional variables by a caret, we get

o+ @9 = —Vp + be, + - Va,  (12)
Re
ob +4-$h = —— %% (13)
! Re Pr ’
L ab| _[-RePr ?=1
i, , =0 52-0_{ 0 i>1 (14)

where we have defined the Prandtl and Reynolds numbers as

F1/3R4/3
= T

Pr=2, Re (15)
K

In this analysis, we take the atmospheric value of Pr = 0.7 and
explore the solution’s dependence on Re. Given the above non-
dimensional equations, the nondimensional solution is fully
specified by the global Re and Pr. By dimensional reasoning,
the plume’s time-averaged center-line vertical velocity w,. and
buoyancy b. must take the forms b, = lA)p(Re,Pr,%)Fz/‘gR’l/3
and w. = Ww.(Re,Pr,2)F'3R'/3 where the nondimensional
scaling functions are at present unknown.

The global Re defined above is closely related to the
plume’s local Reynolds number Rej,., expressed in terms of
the plume’s vertical velocity w, as
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wer .5
= Re w.r =

23 Re ?2/3,
14 [0 i

Rejocal = (16)

where we have applied the MTT scalings [Eq. (5)] and empha-
size that the global Re is a constant fixed by the source’s scales
and the fluid’s viscosity. We see that the plume’s local Reynolds
number increases as the plume rises and widens. Growth of
the MTT plume, however, only explicitly depends on «, and
laboratory experiments peg « to a height-independent cons-
tant value (Carazzo et al. 2006). The fact that « remains fixed
at the universal value of approximately 0.1 as Rejoc,) increases
is a consequence of the fluid flow having already asymptoted
to the high-Rejc, limit. In what follows, we will show that
this same asymptotic behavior applies not just to the far-field
MTT plume, but also to the near-surface spinup layer that
initializes the plume.

3. Model

We solve the nondimensionalized Boussinesq equations
[Egs. (12)—(14)] with Dedalus, a pseudospectral framework
for direct numerical simulations (Burns et al. 2020). The simu-
lation is run with Pr = 0.7 and Re = 10° in a cubic domain
with side length 12 (recall that the equations have been nondi-
mensionalized). Two-dimensional simulations are run in an
identical square domain at various Re. In the z dimension, we
express the fields as a Chebyshev series. At the surface, no-
slip boundary conditions are enforced and a circular spectrally
smooth source of buoyancy is specified,

02 | a2
1- tanh( S 1”
Ar ’

with Ar = 0.01. In the horizontal, the fields are expanded in
Fourier series.

To be considered a direct numerical simulation, the spectral
modes, when projected onto a collocation grid in physical
space, must satisfy the requirement that the grid spacing Ax is
O(m), where 7 is the Kolmogorov length (Moin and Mahesh
1998). In turn, n may be solved for by noting that the length
scale of energy injection R is linked to the dissipation scale n
via the Kolmogorov scaling /R = Re™**. Setting Re = 10°
and expanding the fields horizontally in N = 512 Fourier
modes in Dedalus yields a physical space collocation grid with
uniform horizontal resolution Ax = Ay = 12R/512 ~ 4.

For the vertical Chebyshev basis, the collocation grid has
variable resolution with a higher density of grid points near
the surface. Grid points satisfying z < R have an average grid
spacing of Az ~ 1.1m. The resolution of the surface flow thus
meets the O(n) criterion and is comparable to past spectral
resolutions listed in Table 1 of Moin and Mahesh (1998).

As will be discussed, despite our high resolution, slight
Gibbs ringing is intermittently observed at the smallest scales
in the simulation, indicating that viscous dissipation is not
entirely resolved (Lecoanet et al. 2016). To quantify the
impact of this ringing, in addition to probing the sensitivity of
our results to the domain size, we run a second simulation in a
cubic domain with side length 4 and N = 384 modes, such that

ab

_ RePr
a0z

(17)

z=0
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FIG. 1. (top) Instantaneous and (bottom) time-averaged cross sections of a three-dimensional turbulent plume with a Reynolds number
of Re = 10° and Prandtl number of Pr = 0.7. Variables are nondimensionalized in terms of the surface buoyancy source’s radius R and

magnitude F (with dimensions of velocity X buoyancy).

Ax = Ay = 2n. As shown in the appendix, no Gibbs ringing is
apparent in this smaller simulation, and the time averages of
the velocity field and plume radius in the larger domain and
smaller domain agree to within 10%—an uncertainty factor
that we will apply to our main results.

We employ the second-order BDF scheme of Wang and
Ruuth (2008) to solve the nonlinear terms explicitly and the
linear terms implicitly with a variable time step set by the
Courant-Friedrichs-Lewy condition with a 0.25 safety factor.
To achieve a steady state, we employ damping far from the
source. Let C(%,9,2) be a spatially varying damping coeffi-
cient. Rayleigh drag (—Cu) and Newtonian cooling (—Cb)
are then added to the momentum equation [Eq. (12)] and
buoyancy equation [Eq. (13)], respectively. Damping is per-
formed outside of a half ellipse centered at the surface with a
vertical semimajor axis of 8 and a horizontal semiminor axis
of 4. A tanh function smoothly damps outside this ellipse:

1+ tanh[f(x’y’#]
C&,9,2) = )

2;‘\'damp

fG.5.2) = (257 +57) + 22, (18)

and we set the damping height as H = 8§, transition length
A =1, and time scale as Tgmp = 1.5. Simulations are initialized

from rest with small-scale noise added to the starting buoy-
ancy field (of magnitude b ~ 10™*) to break symmetry. The
simulation is run for 40 time units. A statistical steady state is
reached at 7 ~ 10, and all analysis is performed on the last
30 time units of the simulation. Figure 1 plots instantaneous
and time-averaged fields for this simulation.

In contrast to Plourde et al. (2008), no continuous source of
artificial noise is needed in the simulations to coax the flow
into turbulence. We note that Plourde et al. (2008) reports a
diameter-based Reynolds number of 7700, which, upon con-
verting to the radius-based definition [Eq. (15)] used here,
yields Re ~ 3055. Prior experiments with Re ~ 1000 appear
turbulent (as reviewed in Table 1) so the observation in
Plourde et al. (2008) of a laminar plume at Re ~ 3055 is sur-
prising. Plourde et al. (2008) view this laminarity as unrealis-
tic, and the following analysis suggests that this laminarity
may be due to underresolving the flow.

The Kolmogorov length for Re ~ 3055 is 7/R = Re ™ ~ 1/400.
Plourde et al. (2008) simulated a 10R X 10R X 16R domain on a
Cartesian grid with 720 X 720 X 1200 points and uniform spac-
ing in each dimension, yielding Ax = Ay = Az = 5. While this
is comparable to the resolution used here, Plourde et al. (2008)
employ a second-order central difference scheme rather than a
spectral method, and finite differences generate significant
numerical error. In particular, second-order central difference
schemes with Ax = 57 differentiate a wave with wavelength A at
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TABLE 2. Set of two-dimensional simulations performed. No
7, is fit to the Re = 107 case: this laminar plume grows
diffusively and does not exhibit an MTT cone as shown in Fig. 2.

JOURNAL OF THE ATMOSPHERIC SCIENCES

Re N modes a Z, (R)
10? 256 — —
5 % 10° 384 0.20 —0.94
10° 512 0.24 —-0.30
10* 1024 0.24 -0.24

95% accuracy only if A = 571 (Moin and Mahesh 1998). This
analysis suggests that significant numerical error is present at
inertial scales in Plourde et al. (2008)—consistent with their
“unrealistically laminar” observation. Dedalus simulations run
with fewer modes than the DNS requirement also appear more
laminar in the sense that sharp gradients yield Gibbs waves
rather than small-scale turbulent mixing. The result is a narrower
plume with less turbulent entrainment (not shown here).

4. Results

We analyze here the results of the two-dimensional (2D)
and three-dimensional (3D) DNS of a steady-state, turbulent
plume sustained by a circular source of buoyancy at a no-slip
surface in an unstratified, unsheared Boussinesq fluid.

a. 2D simulations

The set of two-dimensional simulations (see Table 2) is
designed to probe the sensitivity of z, to a range of Re, vary-
ing from laminar to highly turbulent. These simulations are
governed by the two-dimensional version of Egs. (12)-(14)
with a surface buoyancy source applied inside of ¥ =1 (or

VOLUME 79

inside x = R with dimensional variables). First, we note
that the two-dimensional analogs to the MTT equations

[Eq. (4)-(6)] are

d
d—z(rw) = aw, (19)
d. o _
d—z(rw ) =rb, (20)
rwb = Q = constant. (21)

The solution with a point source of buoyancy at r = 0 and
7 =2zyisr = a(z — zy), b « (z — z,)"}, and w constant. To
diagnose the simulated r(z), we must confront the reality that
plumes are not horizontally uniform like the bulk-plume (or
top-hat) solution of MTT. Therefore, a functional definition
of the plume’s radius is required. Following convention
(MTT; Kaye and Hunt 2009; Bouzinaoui et al. 2007), we
model the plume’s radial distribution with a Gaussian. (In the
next section, we verify this assumption and plot the Gaussian
fit to the 3D data.) At each height, we fit a Gaussian to the
time-averaged vertical velocity using least squares and iden-
tify the plume’s effective radius as r(z) = V20, where o is the
Gaussian’s standard deviation. We can then approximate the
time-averaged vertical velocity as

w(x,z) = we(z)e ¥/, (22)
where w.(z) is the time-averaged center-line vertical veloc-
ity. The inferred r(z) and center-line fields are plotted in
Fig. 2, and demonstrate a convergence toward a high-Re
limit.
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FI1G. 2. Time-averaged profiles of two-dimensional plumes with varying Re. The profiles of (left) radius, (center) axial buoyancy, and (right)
axial vertical velocity show a convergence toward an asymptotic turbulent limit.
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FIG. 3. Horizontal distribution of time-averaged (left) vertical velocity and (right) buoyancy at 2 = 5 in the Re = 10°
simulation (black) and the corresponding least squares fit (red) to the Gaussian distributions in Eq. (24).

The values of « and z,, given in Table 2 are computed by a
linear fit to the r(z) curves far from surface. Given a = 0.24,
we also estimate the implied virtual origin of the ad hoc
spun-up-at-surface assumption by solving for the z, that
enforces r(0) = R; that would yield z, = —4.12R. Comparing
this prediction to the results in Table 2, we reach two con-
clusions: 1) the high-Re plume spins up with a virtual origin
that is an order of magnitude closer to the surface than in
the spun-up-at-surface prediction, and 2) even for Re not
yet converged to the high-Re limit, the spun-up-at-surface
condition grossly overestimates the proper z,. We empha-
size this last point because the computational constraints of
three-dimensional simulations prohibits us from probing a
wide range of Re and formally demonstrating Re conver-
gence in three dimensions. The two-dimensional analysis
thus lends support to the notion that a Re = 10® simulation
can be used to assess the accuracy of the spun-up-at-surface
assumption in three dimensions.

b. 3D simulations

In three dimensions, 10°> was the highest achievable Rey-
nolds number given the available computational resources, so
a simulation with that Re is the one presented here. We iden-
tify r(z) by again following the convention of fitting a Gauss-
ian distribution to the plume’s velocity field,

w(s,2) = we(z)e (23)
where s = \/x2 + y? and w.(z) is the center-line vertical veloc-
ity. Figure 3 evinces the goodness of fit. In the left panel of
Fig. 4, we plot r(z), which, regressed against z, yields an esti-
mate of « and z,, via Eq. (4). The regression is computed over
z = [3, 6], over which r(z) appears approximately linear,

providing o = 0.091 = 0.003, in close agreement with prior
studies (MTT; Carazzo et al. 2006), and z, = —(1.14 =
0.02)R. The uncertainties given here are those stemming from
the uncertainty of the least squares fit.

Since we are not able to run the three-dimensional simula-
tion over a wide range of Reynolds numbers, it is not possible
to give a rigorous estimate of the deviation of z, = —1.14R
from the true value of z, in the high-Reynolds limit. By run-
ning a smaller domain and higher-resolution simulation, we
show in the appendix that the time-averaged velocity and
radius have a roughly 10% sensitivity to the domain size and
number of modes. In light of this sensitivity, we will quote the
result to the closest tenth of R, i.e., z, = —1.1R.

For context, we may get some sense for the Re dependence
by looking at the 2D simulations, in which |z,| decreased by
20% from a Reynolds number of 10° to 10*. If 3D scales iden-
tically to 2D, we might expect the high-Re z, to be slightly
closer to the surface than the simulation presented here (run
at a Reynolds number of 10°).

For comparison, the practice of assuming an MTT plume
that is spun up at the surface yields z, = —5R/(6a) = —9.2R.
The 3D simulation reveals that this estimate is off by nearly
an order of magnitude. The consequences of this disagree-
ment will be explored in the subsequent section. Encourag-
ingly, our finding of z, = —1.1R lies within the range
Z, = [—.86, —2.2] identified in past experiments (Table 1).
Note that we caution direct comparison, however, because
these prior plumes are distinct from the case studied here, as
they possessed either a laminar boundary layer, surface vol-
ume sources, or a free-slip boundary condition. Comparing to
prior theoretical estimates, our result lies closer to the z, = 0
prediction by Hunt and Kaye (2001) (obtained assuming a
constant « all the way down to the surface) than to the
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FIG. 4. Time-averaged profiles from (solid) the simulations and (dashed) Egs. (28)—(30) of (left) the plume’s radius, (center) axial buoy-
ancy, and (right) axial vertical velocity.

Z, = —3.34R prediction by Ciriello and Hunt (2020) (obtained
using an « that is linear in the Richardson number).

Beyond z,, we seek a theoretical prediction of the plume’s
vertical velocity and buoyancy. Formulating conservation
equations for the Gaussian plume requires a slight generaliza-
tion to account for the narrower buoyancy distribution,
clearly visible in Figs. 1 and 3. Readers are directed to section
1.2 of Hunt and Kaye (2001) for a review of past experimental
work on this topic. While the radial distribution of velocity
and buoyancy are both shaped by entrainment, we might
expect vertical velocity to have a slightly different distribution
due to the effects of pressure forces.

To account for buoyancy’s narrower profile, we follow the
standard practice reviewed in Turner (1986) of introducing a
parameter A such that

b(s,2) = be(z)e”> /N1 (24)

By least squares estimation, we find A = 0.89 * 0.07 (cf. to

= 0.83 as reported in Bouzinaoui et al. 2007). Now that we

have velocity and buoyancy distributions, we can integrate

over them to find the MTT conservation equations for a
Gaussian plume (Bouzinaoui et al. 2007):

d(V:l;’z) = 2arw, (25)
dl(1/2)w*r?
7(( / dlw‘ )— b, (26)
/\2
] 1wcbcr2 =0, (27)

which admit the solution,

@) =% @ - 2.

(28)
we(z) = woQ' (2 — z) '3, (29)
be(z) = boQ*(z — z,) 3, (30)
where we have defined,
~2/3[a/12 1/3

_ (6 3(A% + 1)]
=) P a1
by = 2 (6_“)74/3 302 + )" (32)

¢ Ba\s 2 '

Given the best-fit parameters collected in Table 3, we pro-
ceed to computing w(z) and b.(z) as shown in Fig. 4. Beneath
z = 2R, the plume fields substantially diverge from the MTT
scalings: the vertical velocity goes to zero to match the no-flux
surface boundary condition, and the buoyancy field transi-
tions to a conductive layer near the surface. This behavior is
manifestly different from the near-surface MTT scalings

TABLE 3. Best-fit parameters to Gaussian model of three-
dimensional plume.

bo Wo a A Zy (R)
Central estimate 31.29 6.08 0.091 0.89 -1.14
Uncertainty 3.64 0.15 0.0003 0.073 0.02
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TABLE 4. The high-Re DNS solution for the spinup of the MTT
plume plotted in Fig. 4.

TARSHISH AND ROMPS

z (R) r (R) bc (FZ/SR*I/S) We (FI/SRI/S)
0 0.68 24.38 0.0

0.25 0.4 8.22 1.29

0.5 0.36 7.36 2.19
0.75 0.33 6.88 2.76

1.0 0.32 6.38 3.18
1.25 0.32 5.79 3.45

1.5 0.33 521 3.63
1.75 0.34 4.63 3.69

2.0 0.35 4.09 371

plotted in dashed lines in Fig. 4. Above this surface layer,
however, the MTT theory is accurate to within 10%, and can
be readily employed to estimate the plume’s properties. We
note that results presented here are nondimensional and are
thus applicable to arbitrary radius R and buoyancy flux F.
Numerical values of r, b., and w, at heights below 2R are
given in Table 4. Taken in combination with the MTT solu-
tion constrained by the parameters in Table 3, this amounts to
a general and comprehensive description of all sufficiently
turbulent Boussinesq plumes rising above uniform circular
sources of buoyancy.

5. Hiroshima fire plume

We are now in a position to calculate the errors generated
by the ad hoc closures of 1) placing the virtual origin at the
surface (i.e., z, = 0) and 2) assuming the MTT plume is spun
up at the surface with a width equal to that of the buoyancy
source (i.e., z, = —5R/(6a) = —9.2). Noting that the numeri-
cal solution asymptotes to an MTT solution at about z = 2R,
we can compare the predictions that those closures would
make for the center-line buoyancy at z = 2R relative to the
actual buoyancy. Noting that b(z, z,) & (z — z,) >, we find

bo(z =2R,z, = 0) ( 2

-5/3
bz = 2R.zy= —1.1R) 2+ 1.1) =20, (33)

be(z =2R,z,= —9.2R) _ (2 +92

-5/3
bz =2R,z,= —1.1R) 2+ 1,1) =012.  (34)

In other words, the two previously used closures overestimate
and underestimate the plume buoyancy by factors of 2.0 and
0.12, respectively.

In the atmosphere, we are often most interested in a
plume’s level of neutral buoyancy since that determines the
height of the layer of concentrated smoke, ash, or other pollu-
tants. For a buoyant plume in an unstratified fluid, however,
there is no level of neutral buoyancy: the plume remains more
buoyant than its surroundings at all heights. Thus, the MTT
theory—and the closure provided for it in Table 3—is not
directly applicable to plumes outside of a well-mixed layer.
On the other hand, we expect that plumes are largely unaf-
fected by environmental stratifications |0b.,,/0z| that are small
compared to the plume’s own buoyancy gradient |db/dz]|.
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Therefore, the high-Re solution given in Fig. 4 and Table 4
should apply to plumes in a stratified atmosphere near the
surface. For this reason, it is likely that the virtual origin of a
plume in Earth’s stratified atmosphere is nearly identical to
the value of —1.1R found here.

Away from the surface, the solution asymptotes to an MTT
plume, which is highly constrained by dimensional analysis.
By Eq. (1), the MTT solution is simply a plume of volume
rate V = @w. Therefore, the fractional entrainment rate &
for the MTT solution is ¢ = dlogVidz = (2/r)drldz = 2alr,
where 2a ~ 0.2. As mentioned earlier, this 1/r scaling stems
from the reasonable assumption that the eddies responsible
for entrainment scale with the size of the plume. Indeed, such
1/r scaling has been observed in many other contexts as well,
including clouds (Stirling and Stratton 2012) and isolated
thermals (Lecoanet and Jeevanjee 2019). Below z = 2R,
& deviates from this simple 1/r scaling, but its value can be cal-
culated at each height from the evolution of the center-line
buoyancy (see below), allowing for the calculation of the full
profile of &(z).

We can approximate a plume in a stratified atmosphere
using the initial conditions and the &(z) from the simulation of
the unstratified case. For the initial conditions, we take the
buoyancy and vertical velocity of the DNS solution at the sur-
face. For adiabatic ascent without entrainment, the dry static
energy DSE (equal to ¢, T + gz) of a lifted parcel is approxi-
mately conserved [see Eq. (35) in the footnote].! Parameteriz-
ing entrainment as a relaxation of the plume’s DSE to the
environmental value over the mixing length 1/e yields

% = ¢DSE, — DSE),

(36)
where the subscript e denotes environmental values. In addi-
tion, we solve an analogous equation for the water-vapor
mass fraction g, to ensure that the solution is terminated
when the plume begins to condense:

dq.
dz

= &(Gwe ~ qu). (37)
While follow-up research is warranted to quantify the impact
of stratification on plume solutions, the point we wish to
make is in no way subtle, and so this approach will suffice.

In particular, we wish to assess the appropriateness of the
spun-up-at-surface approximation in application to the Hiro-
shima firestorm of 6 August 1945. Well after the mushroom
cloud from the nuclear detonation had dissipated, the

! DSE — CAPE is the true conserved variable for a lifted adia-
batic dry parcel (Romps 2015). Consider ascent over a height H
with characteristic buoyancy B. Comparing CAPE ~BH and the
DSE anomaly DSE’ ~ ¢,BT./g, we find

CAPE gH

-1
DSE o7, 0

(35)

where we have plugged in with H = 10 km. We therefore take
DSE’ to be approximately conserved.
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FIG. 5. Hiroshima atmospheric state: (left) temperature, (center) relative humidity, and (right) pressure as estimated from the atmo-
spheric sounding of Tokyo at 0600 LT 6 Aug (2100 UTC 5 Aug) measured by U.S. strategic bombing command (Kerr et al. 1983). Circles

show the sounding and the curves show third-degree polynomial fits.

citywide fire sourced a steady plume of radioactive soot. The
fate of soot from such storms is of great practical importance
considering the potential for deposition of radioactive mate-
rial far from the blast site and the potential for soot to enter
the stratosphere where it can perturb Earth’s climate. To
model the fate of that soot, however, it is critical to know the
plume’s level of neutral buoyancy.

For the Hiroshima firestorm, historical estimates give R ~ 1 km
and a surface heat flux of 20 kW m~? (Aoyama et al. 2011), yield-
ing a buoyancy flux of

8

F=
pcpbo

(20 kW m™2) ~ 0.7m? s 2,

(38)

where we have let 6y =~ 300 K, p = 1 kg m~>, and cp ®

1000 J kg~! K™'. To make contact with the DNS results, we
compute the dimensional scale T = F ®R*> ~ 100 s. In
roughly 107" =~ 20 min, the plume ascends from the surface to
near the domain top at 10R = 10 km and the simulation achieves
steady state. A steady-state treatment of the Hiroshima plume
appears reasonable given that observations show that the fire-
storm burned for several hours (Aoyama et al. 2011). The
velocity scale of the bulk plume is U = F*RY® ~ 9 m s™! with
maximum vertical velocities of w, ~ 4U ~ 40 m s™! occurring
near 2 km as shown in Fig. 4. Axial buoyancies in the mature
plume are in excess of the buoyancy scale B = FZ°R™® »~
0.07 m s~2, but share the same order of magnitude above the
first hundred meters.

Following the analysis in Tajima (1983), we employ the
sounding of Tokyo reported in Kerr et al. (1983) as a proxy
for Hiroshima’s atmosphere on the morning of 6 August
1945. The sounding, plotted as circles in Fig. 5, is consistent
with qualitative observations describing “Japan [as] widely
covered homogeneously by a hot and humid maritime air
mass” (Tajima 1983). We fit third-degree polynomials to these
soundings, shown as solid curves in Fig. 5.

To predict the fire plume’s level of neutral buoyancy, we
can model the plume as an MTT plume spun up at the surface
(which we will denote by a subscript “MTT”) or we can model

the plume using the solution found in the previous section
(which we will denote by a subscript “DNS”). As we will see
momentarily, the initial conditions and the entrainment pro-
files differ dramatically between these two cases.

Using Egs. (28), (30), and (32), we can calculate the initial
center-line buoyancy for the spun-up-at-surface MTT solution
as

1310712 2/3
[ 2 \(6e) (347 + 1)) 23 p5/3 _ 5
bemrr(0) = (3/\2)( 5 ) ( 3 Q*°R™P =0.06 ms™2,

(39)

where the values of « and A are taken from Table 3, and Q =
FR, = 7 X 10° m? s—>. Note that a buoyancy of 0.06 m s>
corresponds to a temperature anomaly of 2 K. The fractional
entrainment rate ¢ can be found from the dilution of the
center-line buoyancy,

_dlog bemrr(2) _ 5
dz 5R/2a + 3z

emrr(2) = (40)
This entrainment rate is plotted in red in the left panel of
Fig. 6. At the surface, this fractional entrainment rate equals
02km™".

For the DNS plume, the time-averaged surface buoyancy at
the center is

bepns(0) = 2438F?PR™Y3 =2m s72, (41)
which corresponds to a temperature anomaly of 60 K. The
fractional entrainment rate can be found from the dilution of
the center-line buoyancy,

_ leg bc,DNS(Z)

dz “42)

epns(z) =
This is plotted as the black curve in the left panel of Fig. 6.
Very close to the surface, where conduction is dominant,
this is not technically the entrainment rate. In fact, at the
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FIG. 6. (left) Fractional entrainment rate e for the spun-up-at-surface MTT (red) and DNS solutions (black). (center) Profiles of buoy-
ancy up to the lifting condensation level (marked by a circle) using the initial conditions and entrainment rates appropriate to the spun-up-
at-surface MTT and DNS cases. (right) Skew T-logp diagram of the environment (dashed) and parcel trajectories (solid).

surface, this definition gives epns(0) = F/k/b. pns(0), which
represents pure conduction. Above the nondimensional
height where bw = ReflPr’ldlA)/df, advection of buoyancy
dominates over conduction. For the DNS solution, this occurs
at a height of 0.015; well above this height, it is correct to inter-
pret the epns defined in Eq. (42) as the fractional entrainment
rate.

We can integrate the buoyancy (initialized to its surface
MTT or DNS value) and water-vapor mass fraction (initial-
ized to the environmental value) using Egs. (36) and (37), the
MTT and DNS entrainment rates in Egs. (40) and (42),
respectively, and the polynomial fits to the soundings for the
environmental values of DSE and g, The resulting profiles of
buoyancy for the MTT and DNS plumes are plotted in the
middle panel of Fig. 6 up to their lifting condensation levels
(LCLs). As a result of the stable conditions and the MTT par-
cel’s unremarkable buoyancy, the lifting calculation pegs the
spun-up-at-surface MTT LCL to within 100 m of the surface.
Given the environmental convective inhibition (CIN), we
conclude that the spun-up-at-surface plume will not reach the
upper atmosphere. In contrast, the DNS parcel achieves an
LCL of roughly 2 km. Will the DNS parcel reach the upper
atmosphere? CIN above the LCL complicates the answer,
which depends on the parcel’s momentum and moist ascent.

1/2
A naive estimate of wicL = (ZIbdz) ~30ms~! suggests

that the parcel may overcome the overlying CIN ~100 J kg ™"
even without additional buoyancy from latent heating.
Regardless, the DNS parcel’s trajectory is markedly different
than the spun-up-at-surface MTT parcel, which would predict
that all of Hiroshima’s hot gases and radioactive soot would
remain trapped near the surface. For comparison, computer
vision analysis of Hiroshima firestorm photographs suggests
that the plume extended up to a height of 16 km (Baba et al.
2011). Lifting the parcel beyond the LCL and comparing the
moist level of neutral buoyancy to this observation requires
an account of moist entrainment and microphysics, which is
beyond the scope of this paper.

6. Conclusions

Turbulent plumes (sustained by a circular source of buoyancy
at a no-slip lower boundary in an unsheared, unstratified fluid)
exhibit a distinct spinup stage before they transition to the scal-
ings predicted by MTT. Two facts—the rapid convergence of
solutions to the high-Re limit and the approximate invariance
of plume solutions with respect to the Prandtl number—Ilead to
a remarkable simplification of the solution set of turbulent
plumes. Indeed, postulating invariance with respect to both Re
and Pr in the high-Re limit, there are no remaining free param-
eters. This suggests that the DNS solution presented here (see
Fig. 4) is the one and only solution for all such turbulent
plumes. Although we have presented evidence from two-
dimensional solutions that this three-dimensional simulation is
plausibly converged to the high-Re limit at a Reynolds number
of only 10°, simulations or experiments at higher Reynolds
numbers should be performed to confirm this.

Well above the surface, all plumes (in an unstratified,
unsheared fluid) asymptote to the MTT solutions. Since the ratio
of the entrainment velocity to the updraft speed () rapidly con-
verges to about 0.1 in the high-Reynolds limit, the dimensional
MTT solutions are uniquely defined by only two parameters: the
buoyancy source rate Q and the height of the virtual origin z,.
Since Q is typically a given, this leaves only z, to be determined.

The three-dimensional DNS solution obtained here estab-
lishes that the plume’s virtual origin is substantially different
from the values previously used. Previous work has often
assumed that the plume is spun up to an MTT solution at the
surface with a width equal to the width of the buoyancy source.
That spun-up-at-surface assumption places the virtual origin of
the MTT plume below the surface a distance about 10 times the
radius of the buoyancy source. In contrast, the DNS solution
finds a virtual origin that lies below the surface by a distance
equal to 1.1 times the source radius (see Table 3). Consequently,
the spun-up-at-surface approximation implies a buoyancy at a
height of 2R (which is where the DNS solution asymptotes to
the MTT solution) that is 10 times too small [see Eq. (34)].
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FIG. Al. (top) Near-source instantaneous vertical velocity in the
(left) small domain and (right) large domain. Large domain data is
a subregion of Fig. 1 plotted with a color scheme that highlights the
wavelike ringing rather than the mean fields. (bottom) Comparison
of the time-averaged vertical velocities. See text for discussion.

We have applied the DNS solution to the case of the
Hiroshima firestorm to predict the level of neutral buoyancy
of the generated plume. The spun-up-at-surface approxima-
tion would predict that the radioactive soot would be trapped
within a few hundred of meters of the surface. In contrast,
using the entrainment rate obtained from the DNS solution,
we predict that the plume reached the free troposphere, and
possibly even the upper atmosphere (Fig. 6) in agreement
with observational evidence (Baba et al. 2011).

The last result is of particular importance because soot in
the upper atmosphere—suspended above the weather layer—
may remain aloft for months to years. Spread across the globe
by the stratospheric circulation, this upper-atmospheric soot
can produce substantial surface cooling. In the nuclear fire-
storm context, this cooling may induce a so-called nuclear
winter (see, e.g., Toon et al. 2007). Thus, an accurate estimate
of the plume’s virtual origin is essential to predicting the
plume’s upper-atmospheric fate.
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APPENDIX

Domain Size and Resolution Effects

Here we describe a smaller-domain simulation run to
assess the impact of the slight Gibbs ringing and domain-
size effects in the larger three-dimensional simulation
described in section 3. We employ a cubic domain of side
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length 4R with N = 384 modes (cf. to the 12R length and
N = 512 modes of the larger simulation). At the same Re
of 10%, the smaller domain has Ax = 2 while the larger
simulation has Ay = 4m. All other aspects of the numerical
setup are the same except for the damping layer, which is
described by Eq. (18) but with a smaller height H = 2.5,
transition length A = 0.25, and 74amp = 1/3. The simulation
is run for 207 and time averages are performed over the
last 107 to compute the mean fields.

Figure Al compares this smaller domain simulation to
the larger simulation. The same larger simulation data plot-
ted in Fig. 1 is shown again in Fig. Al, but with a different
color scheme that emphasizes the slight ringing—an order
of magnitude smaller than the mean fields. Thanks to the
exponentially fast convergence of spectral DNS (Lecoanet
et al. 2016), increasing the resolution eliminates any visible
signs of Gibbs ringing, indicating that the small domain sim-
ulation is well converged. The bulk geometry of the plumes
and the magnitudes of the vertical velocity are in broad
agreement between the two simulations. The larger domain
simulation, however, exhibits a roughly 10% higher peak
velocity. Both the domain size and resolution are different,
so the exact source of this discrepancy is unclear. We leave
that question to future work, and, for the purposes of this
paper, we take 10% to be a rough estimate of the uncer-
tainty in the larger simulation results.
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