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Abstract. This study presents a method to identify and dis-
tinguish insects, clouds, and precipitation in 35 GHz (Ka-
band) vertically pointing polarimetric radar Doppler velocity
power spectra and then produce masks indicating the occur-
rence of hydrometeors (i.e., clouds or precipitation) and in-
sects at each range gate. The polarimetric radar used in this
study transmits a linear polarized wave and receives signals
in collinear (CoPol) and cross-linear (XPol) polarized chan-
nels. The measured CoPol and XPol Doppler velocity spec-
tra are used to calculate linear depolarization ratio (LDR)
spectra. The insect–hydrometeor discrimination method uses
CoPol and XPol spectral information in two separate algo-
rithms with their spectral results merged and then filtered
into single value products at each range gate. The first algo-
rithm discriminates between insects and clouds in the CoPol
Doppler velocity power spectra based on the spectra tex-
ture, or spectra roughness, which varies due to the scatter-
ing characteristics of insects vs. cloud particles. The second
algorithm distinguishes insects from raindrops and ice parti-
cles by exploiting the larger Doppler velocity spectra LDR
produced by asymmetric insects. Since XPol power return
is always less than CoPol power return for the same target
(i.e., insect or hydrometeor), fewer insects and hydromete-
ors are detected in the LDR algorithm than the CoPol algo-
rithm, which drives the need for a CoPol based algorithm.
After performing both CoPol and LDR detection algorithms,
regions of insect and hydrometeor scattering from both algo-

rithms are combined in the Doppler velocity spectra domain
and then filtered to produce a binary hydrometeor mask in-
dicating the occurrence of cloud, raindrops, or ice particles
at each range gate. Forty-seven summertime days were pro-
cessed with the insect–hydrometeor discrimination method
using US Department of Energy (DOE) Atmospheric Radia-
tion Measurement (ARM) program Ka-band zenith pointing
radar observations in northern Oklahoma, USA. For these
47 d, over 70 % of the hydrometeor mask column bottoms
were within ±100 m of simultaneous ceilometer cloud base
heights. All datasets and images are available to the public
on the DOE ARM repository.
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1 Introduction

The vertical structure of non-precipitating clouds plays an
important role in the Earth’s radiation balance. These clouds
absorb longwave radiation emitted from the surface and re-
flect shortwave solar radiation back into space (Cess et al.,
1990). The proportion of these two processes determines
whether these clouds act as a net radiation sink or source in
the Earth’s radiation budget (Ramanathan et al., 1989). Ver-
tically pointing cloud radars have been used for decades to
quantify the extent to which non-precipitating clouds can be
used as inputs to Earth radiation budget studies to understand
cloud dynamics and cloud lifecycles (Moran et al., 1998;
Ackerman and Stokes, 2003).

In addition to measuring cloud properties, cloud radars are
sensitive enough to detect individual insects within the radar
volume (for overviews, see Riley, 1989; Westbrook et al.,
2014; Nansen and Elliot, 2016). The field of radar entomol-
ogy exploits this sensitivity by pointing polarimetric radar
beams a few degrees off vertical and rotating the beam 360◦

in azimuth to estimate insect population and migration direc-
tion (Drake et al., 2020). The field of radar meteorology has
used polarimetric scanning radar observations to track insect
flying direction and altitude outside of clouds (Mueller and
Larkin, 1985) and to estimate gust-front motions ahead of
convective cells because insects and small pieces of vegeta-
tion act as radar reflectors trapped within the strong bound-
ary layer outflow (Klingle et al., 1987). Insects are con-
sidered clutter and unwanted signals in vertically pointing
cloud radar observations. Two approaches have been used
to identify insects in cloud radar observations: polarimet-
ric signatures and Doppler velocity power spectra signa-
tures. Compared to more spherical hydrometeors (i.e., cloud
droplets, raindrops, and ice particles), insects have asymmet-
rical shapes that produce large cross-polarization power re-
turn signals that enable insects to be identified with polari-
metric radar estimates including differential reflectivity and
linear depolarization ratio (Lohmeier et al., 1997; Sekelsky et
al., 1998; Khandwalla et al., 2001, 2002; Martner and Moran,
2001). Also, large insects will have different radar cross sec-
tions at different radar operating wavelengths due to the res-
onance or Mie scattering effects enabling insects to be de-
tected in dual-wavelength radar observations (Khandwall et
al., 2001, 2002; Kollias et al., 2002).

Insects produce unique signatures in the Doppler veloc-
ity power spectra. An individual insect scatters as a sin-
gle point target with a returned power confined to a narrow
Doppler velocity range and to a single range gate (Bauer-
Pfundstein and Görsdorf, 2007). In contrast, clouds and pre-
cipitation are composed of hydrometeor distributions con-
taining different size particles with different velocities that
are spread over several range gates leading to broader mea-
sured Doppler velocity power spectra extending over several
range gates (Luke et al., 2008). The difference between insect
and hydrometeor Doppler velocity power spectra signatures

has been used to distinguish insect and hydrometeor peaks
in Doppler velocity spectra (Bauer-Pfundstein and Görsdorf,
2007; Luke et al., 2008). In these studies, multiple peaks
were first found in the spectra and then intelligent algorithms
(Bauer-Pfundstein and Görsdorf, 2007) or neural network al-
gorithms (Luke et al., 2008) were developed to classify peaks
as the result of either insect or hydrometeor scattering. The
method presented herein reverses the processing steps by
first identifying and then removing insect signatures in the
Doppler velocity spectra before estimating spectrum peaks.

Identifying and removing radar scattering from insects and
other sources of “atmospheric plankton” (Lhermitte, 1966)
has been a known problem in developing operational cloud
products (Kollias et al., 2016). The US Department of Energy
(DOE) Atmospheric Radiation Measurement (ARM) pro-
gram merges observations from multiple sensors (including
radars, lidars, and ceilometers) to produce an estimate of hy-
drometeors (i.e., cloud particles, raindrops, and ice particles)
in the vertical column, called the Active Remote Sensing of
CLouds (ARSCL) product (Clothiaux et al., 2000). ARSCL
is a high temporal (∼ 4 s) and vertical (∼ 30 m) resolution op-
erational product that primarily uses ceilometer cloud base
and radar moments to classify all returns into one of three
scattering regimes: hydrometeor-only scattering, clutter-only
scattering (due to insects or another non-atmospheric arti-
fact), and scattering due to a mixture of hydrometeors and
clutter within the radar pulse volume. An approximate esti-
mate of maximum clutter height is provided to an automated
heuristic algorithm developed over two decades of experi-
ence producing the ARSCL product at multiple radar sites.
The results of the classification are reviewed. On rare occa-
sions, the maximum clutter height is revised and the classifi-
cation procedure is repeated.

Figure 1 shows 1 h of ARSCL processed reflectivity from
the DOE ARM Southern Great Plains (SGP) central facility
on 31 July 2018 (ARM user facility, 2014). Figure 1a (top
panel) shows ARSCL reflectivity for radar volumes classi-
fied as either hydrometeor-only or hydrometeor-plus-clutter
with Fig. 1b (middle panel) showing ARSCL hydrometeor-
only reflectivities. The black symbols represent ceilometer-
derived cloud base, which is also an input to the ARSCL
operational algorithm. Figure 1c (bottom panel) shows the
hydrometeor mask produced using the algorithms discussed
herein. The apparent fall streaks in the ARSCL hydrometeor-
only product below 1.5 km are misclassifications of insect
clutter. The misclassification of insect clutter as hydromete-
ors and the inefficient ARSCL processing steps were some
of the reasons why DOE ARM sponsored this work to iden-
tify insect clutter with the aim of improving future ARSCL
products.

The method to identify insects and hydrometeors pre-
sented herein builds on prior work using polarimetric di-
versity and Doppler velocity power spectra variability (e.g.,
Martner and Moran, 2001; Bauer-Pfundstein and Görsdorf,
2007; Luke et al., 2008; Görsdorf et a., 2015). One unique
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Figure 1. Active Remote Sensing of CLouds product (ARSCL) for
hour 19:00 UTC (14:00 LT) from the DOE ARM Southern Great
Plains (SGP) central facility on 31 July 2018. (a) ARSCL reflec-
tivity for radar volumes ARSCL classified as either hydrometeor-
only or hydrometeor-plus-clutter. (b) ARSCL reflectivity for radar
volumes ARSCL classified as hydrometeor-only. (c) Hydrometeor
mask produced using the method described herein. The black sym-
bols in all panels are ceilometer-derived cloud base. Note the hy-
drometeor misclassification below the ceilometer cloud base in (b)
motivates the need for improved insect clutter detection.

feature of the proposed algorithms is that insect and hydrom-
eteor scattering are identified before identifying significant
peaks in the Doppler velocity spectra. This approach comple-
ments the methods that first identify multiple peaks and then
classify each peak (Bauer-Pfundstein and Görsdorf, 2007;
Luke et al., 2008). The observations used in this study and the
signatures of insect and hydrometeor scattering are discussed
in Sects. 2 and 3. Section 4 presents the main concept behind
the algorithms developed in this study. Section 5 compares
the hydrometeor masks with the Clouds Optically Gridded
by Stereo (COGS) product (Romps and Öktem, 2018) de-
rived from stereo cameras. Section 5 also compares the hy-
drometeor mask cloud bottom with ceilometer-derived cloud
base. Conclusions and next steps are discussed in Sect. 6. The
Supplement contains images of insect and hydrometeor clas-
sifications for 47 summertime days in northern Oklahoma,
USA, identified as LASSO cloud simulation events (LASSO,
2020).

2 Observations

The observations used in this study were collected by the
US Department of Energy (DOE) Atmospheric Radiation
Measurement (ARM) program at their Southern Great Plains

(SGP) central facility located in northern Oklahoma. Verti-
cally pointing Ka-band radar co-polarized (CoPol) and cross-
polarized (XPol) Doppler velocity power spectra are pro-
cessed to identify insects, clouds, and precipitation in the ver-
tical column. Verification of those classifications are based
on observations from co-located lidar, ceilometer, Total Sky
Imager (TSI), and cloud boundaries contained in the Clouds
Optically Gridded by Stereo (COGS) product (Romps and
Öktem, 2018).

2.1 Ka-band ARM zenith pointing radar (KAZR)

The DOE ARM program deploys atmospheric observing
systems to characterize the radiative properties of clouds
in the atmosphere (Mather and Voyles, 2013). One of
ARM’s hallmark instruments is the Ka-band (35 GHz)
ARM zenith pointing cloud radar (KAZR), which trans-
mits linear polarized waves that are detected simultane-
ously with collinear polarized (CoPol) and cross-linear polar-
ized (XPol) receivers. The received signals are processed to
yield co-polarized SCoPol

signal (vi,hj ) (Watts) and cross-polarized
SXPol

signal(vi,hj ) (Watts) Doppler velocity power at each veloc-
ity bin vi and range gate hj . The linear depolarization ratio
spectra profile SLDR

dB (vi,hj ) (dB) is the ratio of polarized sig-
nal magnitudes defined as

SLDR
dB

(
vi,hj

)
= 10log

[
SXPol

signal
(
vi,hj

)
SCoPol

signal
(
vi,hj

)] (1a)

or as

SLDR
dB

(
vi,hj

)
= SXPol

signal,dB
(
vi,hj

)
− SCoPol

signal,dB(vi,hj ), (1b)

where SXPol
signal,dB(vi,hj ) and SCoPol

signal,dB(vi,hj ) are expressed
in decibel units (dB) using XdB = 10log[X]. The linear de-
polarization ratio LDR (dB) is the integration of XPol and
CoPol signals over the spectrum and is defined as

LDR(hj )= 10log


vmax∑
vmin

[
SXPol

signal(vi ,hj )

SCoPol
signal (vi ,hj )

]
1v

vmax∑
vmin

1v

 , (2)

where vmin to vmax define the velocity range of valid
SCoPol

signal (vi,hj ) and SXPol
signal(vi,hj ) observations.

At SGP, KAZR operates in the general (GE) and medium
(MD) sensitivity modes to sense clouds at different altitudes
with operating parameters during 2018 and 2019 shown in
Table 1 (ARM user facility, 2011a, b; Widener et al., 2012).
Even though insects are detected in both KAZR operating
modes, to simplify the figures and algorithm descriptions, the
results from just the MD mode are presented herein. Since
the MD mode transmits a long frequency-modulated pulse,
the first resolved range gate is 570 m above the radar. The
KAZR 3.05 m diameter Cassegrain parabolic reflector man-
ufactured by Millitech produces a 0.2◦ antenna beamwidth
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Table 1. Operating parameters for KAZR deployed at ARM Southern Great Plains (SGP) during 2018 and 2019. Operating modes included
general purpose (GE) and medium sensitivity (MD) modes. Tabulated parameters include: pulse repetition frequency (PRF) (Hz), inter-pulse
period (IPP) (µs), number of points in FFT (NFFT), number of averaged spectra (also known as number of incoherent integrations) (Nincoh),
Nyquist velocity (VNyquist) (m s−1), velocity resolution (1v) (m s−1), range to first range gate (m), range resolution (m), time on target
(which is calculated using IPPNFFTNincoh) (s), and time between samples (s).

Parameter

Sensitivity mode General (GE) Medium (MD)
Frequency (GHz) 34.83 34.89
Pulse repetition frequency (PRF) (Hz) 2771 2771
Inter-pulse period (IPP) (µs) 360 360
Pulse duration (ns) 300 3967
Pulse modulation None Linear frequency modulation
Range resolution 1R (m) 45 45
Distance between range gates (m) 30 30
Range to first range gate R1 (m) 100 570
Number of points in FFT (NFFT) 256 256
VNyquist (m s−1) 5.96 5.95
1v (cm s−1) 4.67 4.67
Number of incoherent integrations (Nincoh) 20 20
Time on target ttarget = IPPNFFTNincoh (s) 1.8 1.8
Time between samples tsample (s) 3.7 3.7

with 57.5 dBi gain, has −27 dB cross-polarization isolation,
and has a membrane radome sloping across the antenna with
a dry two-way loss less than 2 dB (Widener et al., 2012).
The MD mode uses a non-linear frequency modulated chirp
over a 3967 ns pulse length to produce a 45 m range resolu-
tion sampled at 30 m range spacing. At 1 km range, the radar
pulse volume is a 3.6 m diameter horizontal disk over a 45 m
range to yield a pulse volume of approximately 450 m3. To
save computer hard disk space, the KAZR CoPol and XPol
Doppler velocity power spectra are retained only at range
gates with significant power above a noise threshold.

2.2 Validation observations

Two observational datasets are used to validate the derived
KAZR insect and hydrometeor classifications: ceilometer
cloud base estimates from a Vaisala model CL31 ceilome-
ter (ARM user facility, 2010; Morris, 2016) and cloud bot-
tom and top estimates from the COGS product (ARM user
facility, 2017). The Vaisala ceilometer uses a pulsed InGaAs
diode laser at 910 nm wavelength and the vendor-supplied
algorithm estimates cloud base at 10 m and 16 s resolution
when the vertical visibility is less than 100 m (Morris, 2016).
The COGS cloud boundaries are derived from three pairs of
stereo cameras positioned around the SGP central facility and
represent cloud boundaries over a cubic domain 6 km to a
side (Romps and Öktem, 2018). Due to camera visual occlu-
sion during precipitation, COGS cloud boundaries are only
estimated for cases of shallow cumulus clouds, which allow
the three cameras to view the vertical extent of each cloud.
Likewise, estimates from COGS are only available during
daylight hours.

3 Insect, cloud droplet, and precipitation spectral
characteristics

This section discusses the scattering characteristics of in-
sects, atmospheric plankton, clouds, and precipitation as ob-
served in KAZR CoPol and XPol Doppler velocity power
spectra. The first subsection discusses characteristics when it
is not raining and the radar is observing individual insects or
other atmospheric plankton particles scattering as point tar-
gets with narrow velocity ranges and shallow cumulus clouds
scattering as distributed targets with broader velocity ranges.
The variability of return power across the Doppler velocity
spectrum, or the spectrum “texture”, is used to distinguish
point target insects from distributed target clouds. The sec-
ond subsection describes the characteristics when individual
insects and raindrop or ice particle distributions occur simul-
taneously in the radar volume. The LDR at each Doppler ve-
locity bin is used to distinguish high LDR insects from low
LDR raindrops or ice particles.

3.1 Insects and shallow cumulus clouds

Figure 2 shows an hour of KAZR observations when insects
(or other atmospheric plankton particles) and shallow cu-
mulus clouds are observed over the radar during 19:00 UTC
(14:00 LT) on 31 July 2018. From top to bottom, Fig. 2 shows
KAZR (a) CoPol reflectivity (dBZ), (b) mean Doppler ve-
locity (m s−1), (c) Doppler velocity spectrum width (m s−1),
(d) linear depolarization ratio (LDR) (dB), and (e) KAZR
CoPol reflectivity at time–height locations (also called “pix-
els” in this study) that do not have an LDR measurement.
The black symbols in each panel indicate ceilometer-derived
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cloud base height, which is near 1.5 km for this hour. Below
cloud base, reflectivity (Fig. 2a) and spectrum width (Fig. 2c)
have a coherent pattern, but vertical motion (Fig. 2b) appears
more variable. If drizzle or rain were below cloud base, then
all three quantities would be coherent with downward mo-
tions increasing as reflectivity and spectrum width increase
(Williams and Gage, 2009). Thus, it is not raining below
cloud base. Above the ceilometer-derived cloud base height,
there are CoPol reflectivity observations (Fig. 2a) but not as
many LDR estimates (Fig. 2d). For example, near minute
20, there is an enhancement of CoPol reflectivity above the
ceilometer cloud base and extending above 2 km; yet, there
are very few LDR observations in this time–height region.
Since LDR requires both CoPol and XPol reflectivity ob-
servations, the lack of LDR above cloud base indicates that
the XPol channel is not detecting cloud particles. This CoPol
vs. XPol sensitivity is illustrated in the bottom panel, which
shows CoPol reflectivity for all pixels that do not also have
an LDR observation. The continuous time–height CoPol re-
flectivity observations above 1.5 km are cloud features that
are easily discernible by eye. Return signals from individual
insects appear as speckles up to 4 km in all panels.

The CoPol and XPol Doppler velocity power spectra pro-
duced by individual insects and by cloud droplet distribu-
tions have different characteristics as illustrated in Fig. 3,
which shows CoPol (Fig. 3a) and XPol (Fig. 3b) Doppler
velocity power spectral density profiles at 19:19:02 UTC on
31 July 2018. The vertical axis extends from 0 to 3 km in
height and the horizontal axis extends±6 m s−1 radial veloc-
ities. The Nyquist velocity is 5.95 m s−1 and downward mo-
tions have positive values consistent with positive raindrop
diameters having positive fall speeds due to gravity. Due to
the long coded transmitted pulse, the first observations oc-
cur at 0.57 km range. The colors represent the return signal
power expressed in dB with warmer colors indicating larger
return signal power. The mean noise power is approximately
−100 dB.

Figure 3c shows CoPol Doppler velocity power spectra
at 1 and 2 km heights (black and red lines, respectively).
The power spectrum at 1 km has more variability between
velocity bins compared to the spectrum at 2 km. This vari-
ability is because the radar is detecting individual insects
within the 450 m3 field of view with each insect moving at
its own radial velocity. If an insect is the only insect mov-
ing at a particular velocity, the spectrum will have an iso-
lated peak (e.g., near −1.7 m s−1 radial velocity in Fig. 3c).
If multiple insects are moving at similar speeds, the spec-
trum will be broader yet still have variability. For example,
between −1 and +3 m s−1 radial velocities, the 1 km height
spectrum (black line) is both elevated in magnitude and has
more bin-to-bin variability than the spectrum from 2 km (red
line). Also, the backscattered power from insects is primar-
ily confined to one range gate with some power leaking into
neighboring range gates due to radar signal processing lim-
itations, which produce point enhancements in the spectra

Figure 2. Moments calculated from raw spectra for hour 19:00 UTC
on 31 July 2018. (a) CoPol reflectivity (dBZ). (b) Mean radial
velocity (m s−1); positive values are downward motion. (c) Spec-
trum width (m s−1). (d) Linear depolarization ratio (LDR) (dB).
(e) CoPol reflectivity (dBZ) at pixels that do not have an LDR mea-
surement. The black symbols in all panels are ceilometer-derived
cloud base. The vertical dashed line indicates time 19:02 UTC,
which is the time of the profile shown Figs. 3 and 6.

profile. Shown in sequential spectra profiles in the Supple-
ment, point enhancements often appear in only one spectra
profile and not in neighboring profiles separated 4 s apart.
The surface wind speed was about 3 m s−1 for this profile
and there is not enough information to determine whether the
insects are passive tracers advecting with the wind or self-
propelling themselves through the 3.6 m diameter by 45 m
field of view in less than 4 s.

In contrast to individual insects, clouds and precipitation
are distributed targets filling the radar volume with hundreds
or thousands of hydrometeors of different sizes with differ-
ent radial velocities. Since the number of particles in the hy-
drometeor size distribution varies gradually over neighbor-
ing particle sizes and the hydrometeor spectrum is extended
in the velocity dimension due to antenna broadening effects,
the return power spectrum has a gradual change over neigh-
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Figure 3. Spectra from the profile at 19:19:02 UTC on 31 July 2018.
(a) CoPol Doppler velocity power spectra (dB) as a function of
range and radial velocity. (b) XPol Doppler velocity power spectra
(dB) as a function of range and radial velocity. (c) CoPol Doppler
velocity power spectra at 1.0 km (black line) and 2.0 km (red line).
(d) XPol Doppler velocity power spectra at 1.0 km (black line).

boring velocity bins. Thus, the power spectrum from a dis-
tribution of many hydrometeors is smoother than the return
from a few individual insects. The smoother power spectra
at 2 km height shown in Fig. 3c are consistent with a distri-
bution of small cloud droplets moving at different velocities
within the radar volume. In addition to smooth power spec-
tra across the velocity dimension, power spectra from cloud
droplets are also more continuous in range due to the vertical
extent of clouds as can be seen with a continuity of clouds
with height in Fig. 3a.

3.2 Insects and precipitation

Figure 4 shows time–height cross sections of KAZR CoPol
reflectivity (Fig. 4a) and LDR observations (Fig. 4b)
when insects, clouds, and precipitation are observed in the
same hour. Observations were collected during 04:00 UTC
(23:00 LT) on 4 April 2019. From minutes 0–20, the approx-
imate 1.5 km ceilometer cloud base height (black symbols) is
above the insect layer that has LDR values between approxi-
mately −5 and −10 dB (see Fig. 4b), while the CoPol reflec-
tivity is continuous in time and height above the ceilometer
cloud base height (see Fig. 4a and c). At the beginning of the
hour, the CoPol reflectivity (Fig. 4a) time–height structure
indicates a precipitating cloud system between 3 and 5 km
that evolves in time with precipitation reaching the lowest
resolved height of 0.57 km after minute 20. The LDR shows
a similar time–height structure (with reduced vertical depth)
with LDR values ranging between−25 to−20 dB. The LDR

Figure 4. Moments calculated from raw spectra and the retrieved
hydrometeor QC1 mask for hour 04:00 UTC on 4 April 2019.
(a) CoPol reflectivity (dBZ). (b) Linear depolarization ratio (LDR)
(dB). (c) CoPol reflectivity (dBZ) at pixels that do not have an LDR
measurement. (d) Retrieved hydrometeor QC1 mask. The black
symbols in both panels are ceilometer-derived cloud base.

enhancement near 2.4 km and after minute 20 is due to a
mixture of liquid and frozen particles near the melting layer
(Baldini and Gorgucci, 2006). Below the melting layer, the
LDR has values near −25 dB that is due to scattering from
raindrops. Above the melting layer, scattering from asym-
metrical ice particles leads to LDR values near−20 dB (Bal-
dini and Gorgucci, 2006). In contrast to the shallow cumu-
lus cloud droplet observations in Figs. 2 and 3, KAZR has
enough sensitivity to detect XPol signal returns from large
spherical raindrops and ice particles.

Figure 4c shows the CoPol reflectivity at time–height pix-
els that do not have an LDR measurement. As with the
shallow cloud observations (see Fig. 2e), there are more
CoPol observations than LDR observations. The bottom
panel (Fig. 4d) shows the QC1 hydrometeor mask produced
by the insect–hydrometeor detection algorithm described in
Sect. 4. The events shown in Figs. 2–4 highlight three impor-
tant attributes of CoPol and LDR measurements:

– LDR measurements detect some, but not all, insect,
cloud, and precipitation observations.

– KAZR LDR measurements do not have the sensitivity
to detect shallow non-precipitating liquid clouds.
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– Doppler velocity power spectra contain signatures
unique to insect scattering and hydrometeor scattering.

The limitation of LDR measurements not detecting all insects
detected by CoPol measurements and the benefit of Doppler
velocity power spectra having signatures of insects and hy-
drometeor scattering suggests that Doppler velocity power
spectra can be analyzed along with LDR measurements to
discriminate between insect and hydrometeor scattering.

4 Anatomy of insect–hydrometeor detection algorithms

As described previously, the radar returned signal re-
sults from scattering from insects (including atmospheric
plankton) and/or hydrometeors (aka, cloud droplets or
precipitation-sized particles). The insect–hydrometeor detec-
tion algorithms described in this section aim to classify each
region of the CoPol and LDR Doppler velocity spectra as ei-
ther insect or hydrometeor scattering. Next, the two CoPol
and LDR regional spectral classifications are combined and
then filtered to produce masks indicating the occurrence of
insect or hydrometeor scattering at every range gate.

The detection algorithms start with the observed CoPol
and XPol spectra profiles SCoPol/XPol

obs (vi,hj ) (Watts). These
are a combination of signal power SCoPol/XPol

signal (vi,hj ) (Watts)
and random noise power n(vi,hj ) (Watts)

SCoPol
obs

(
vi,hj

)
= SCoPol

signal
(
vi,hj

)
+ n

(
vi,hj

)
(3a)

and

SXPol
obs

(
vi,hj

)
= SXPol

signal
(
vi,hj

)
+ n

(
vi,hj

)
. (3b)

The signal powers are a combination of insect signal power
SCoPol/XPol

insect (vi,hj ) (Watts) and hydrometeor signal power
SCoPol/XPol

hydro (vi,hj ) (Watts) for both polarizations. This can
be expressed as

SCoPol
signal

(
vi,hj

)
= SCoPol

insect
(
vi,hj

)
+ SCoPol

hydro
(
vi,hj

)
(4a)

and

SXPol
signal

(
vi,hj

)
= SXPol

insect
(
vi,hj

)
+ SXPol

hydro
(
vi,hj

)
. (4b)

The goal of the CoPol and LDR insect–hydrometeor detec-
tion algorithms is to classify insect and hydrometeor scatter-
ing contributions at each (vi,hj ) location. Insects and hy-
drometeors do occur in the same range gate and sometimes
at the same velocity (as will be seen in Figs. 6, 8, 9, and
11). These simultaneous insect and hydrometeor classifica-
tions will be mitigated by temporal quality control filtering.

The observed KAZR CoPol and XPol spectra profiles
(Fig. 3) are the inputs to the insect–hydrometeor algorithms,
with the processing steps for both algorithms outlined in
Fig. 5. The methodology consists of two parallel algorithms.
The CoPol texture algorithm classifies insects and hydrom-
eteors based on the CoPol spectra texture, with the under-
standing that scattering from insects produces more spectrum

variability than cloud droplet or raindrop distributions. The
LDR algorithm classifies insects and hydrometeors based
on the understanding that asymmetric insects produce larger
LDR magnitudes than spherical raindrops (when viewed
from the bottom) and that the non-precipitating liquid cloud
droplets should not produce any signal in the KAZR XPol
channel for single scattering processes. Both algorithms pro-
duce insect–hydrometeor membership classes for every re-
gion of the spectra profile. The membership classes are com-
bined and then reduced to binary insect and hydrometeor
masks that have affirmative values for insect or hydrome-
teor scattering at each range gate. After processing individ-
ual spectra profiles, two time–height continuity quality con-
trol (QC) filters are applied to the binary hydrometeor masks
to remove outliers. This is based on the understanding that
clouds and precipitation are persistent over tens of seconds
and tens of meters. Details of each algorithm module are de-
scribed in the following sections.

4.1 CoPol texture algorithm branch

This section describes the CoPol texture algorithm by apply-
ing the processing steps (Boxes 1–4 of Fig. 5) to the observed
spectra profile shown in Fig. 3a. An objective noise thresh-
old nHS(hj ) is estimated from the CoPol spectra at each
height (Hildebrand and Sekhon, 1974; Carter et al., 1995).
The CoPol spectra with magnitudes greater than nHS(hj )

are defined as signal power (see Eq. 3). The CoPol signal
power for the boundary layer spectra in Fig. 3a is shown in
Fig. 6a. As discussed before, insect scattering produces delta
functions in the power spectra that are broadened in the ve-
locity domain because of hardware limitations (e.g., antenna
beamwidth) and signal processing techniques (e.g., FFT pro-
cessing). A texture parameter T dB(vi,hj ) (dB) (Box 2 of
Fig. 5) captures delta function variability in the CoPol power
spectra and is defined as

T dB (vi,hj )=max
[∣∣∣SCoPol

signal,dB (vi)− S
CoPol
signal,dB(vi−1)

∣∣∣ ,∣∣∣SCoPol
signal,dB (vi)− S

CoPol
signal,dB(vi+1)

∣∣∣] , (5)

where max[a,b] selects the larger magnitude value between
estimates a or b. To capture both positive and negative
changes equally, T dB(vi,hj ) uses the absolute magnitude,
then selects the largest difference between the neighbors (i.e.,
vi−1 or vi+1). Figure 6b shows the texture T dB(vi,hj ) for the
CoPol power spectra shown in Fig. 6a. Note that the small
magnitude texture values in the upper heights are due to
cloud droplet scattering and larger magnitude texture values
in the lower heights are caused by insect scattering. Several
features make texture T dB(vi,hj ) well suited for identifying
insect produced delta function variability. First, the texture
T dB(vi,hj ) is calculated using signal powers expressed in
decibel units. Thus, the power difference between neighbors
in decibel units is the same as a power ratio, or a percent
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Figure 5. Retrieval logical flow diagram.

change, when the power is expressed in linear units (e.g.,
10 log

[
A
B

]
= 10log[A]−10log[B]). This implies that fluctu-

ations expressed in decibel units are independent of magni-
tude, which allows for comparisons of low magnitude cloud
observations with larger magnitude insect observations as
shown in Fig. 3. Second, a narrow KAZR antenna beamwidth
allows the difference between nearest neighbors (i.e., vi and
vi±1) to quantify delta functions. Note that depending on
radar hardware and operating parameters, the insect peak
may be broader than these observations, and power differ-
ences using further neighbors may be necessary in order to
identify delta functions (e.g., between vi and vi±2).

With a goal of identifying regions of insect and hy-
drometeor scattering, a small velocity–height window is
moved throughout the T dB(vi,hj ) domain and texture statis-
tics are calculated for each small region. For this KAZR
dataset, a velocity–height window of five velocity bins
(total width of 0.186 m s−1) and three range gates (to-
tal depth of 90 m) was large enough to capture regional
texture variability. For each small region, maximum tex-
ture T dB

max =max
[
T dB(vi±2,hj±1)

]
and standard deviation

T dB
SD = SD

[
T dB(vi±2,hj±1)

]
are estimated and assigned to

the location (vi,hj ). Figure 6c and d show the regional max-
imum and standard deviation for the texture shown in Fig. 6b.
Note that both quantities are larger at lower altitudes where
insect scattering dominates compared to higher altitudes that
are dominated by cloud droplet scattering. Interestingly, en-
hancements in both maximum texture and SD texture are vis-

ible near 1.8 and 2 km indicating that insect scattering is oc-
curring with close proximity to cloud scattering regions.

With an objective of separating insect and cloud scatter-
ing regions based on CoPol texture statistics, Fig. 7a, b, and
c shows one-dimensional (1D) and two-dimensional (2D)
probability distribution functions (PDFs) of T dB

SD = SD
[
T dB]

and T dB
max =max

[
T dB] for all profiles in hour 19:00 UTC of

31 July 2018 and all spectral regions that do not have an LDR
measurement. The spectral regions with an LDR measure-
ment are shown in Fig. 7d, e, and f. The color coding in the
2D plot represents the percent occurrence relative to the cell
with the maximum number of observations. The 1D PDFs
produced from the observations are shown with black curves
in Fig. 7a and c using 953 136 samples, each representing a
small spectral region, distributed into two populations. The
peak with smaller SD

[
T dB] and smaller max

[
T dB] is due

to cloud particle scattering. The peak with larger texture at-
tributes is caused by insect scattering. The contour lines in
Fig. 7b represent 90 %, 75 %, 63 %, and 50 % occurrence of
2D Gaussian functions estimated for both populations. The
red lines in Fig. 7a and c are 1D Gaussian function fits to
the observations. Better fits were obtained using generalized
Gaussian functions that accounted for skewness in the ob-
served distributions. However, these better fits did not yield
better classifications, as better classifications depend on the
samples between the two peaks and not on the outer tails of
the distributions that determined the distribution skewness.

The observations with LDR in Fig. 7d, e, and f show only
one distribution corresponding to insect scattering. The func-
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Figure 6. Spectra profile measurements and calculations from the profile at 19:19:02 UTC on 31 July 2018. (a) CoPol spectra. (b) CoPol tex-
ture. (c) Max(texture). (d) SD(texture). (e) XPol spectra. (f) LDR spectra. (g) Mean(LDR). (h) SD(LDR). All measurements and calculations
are in units of dB.

Figure 7. 1D and 2D distributions of texture statistics from hour 19:00 UTC on 31 July 2018. Panels (a)–(c) are 953 136 spectra regions
without LDR detected and panels (d)–(f) are 972 113 spectra regions with LDR detected. (a) 1D PDF of SD(texture). The black line is
observations and the red dashed line is fit to two Gaussian distributions. (b) Colors are the observed 2D distribution of SD(texture) vs.
Max(texture). Colors represent the percentage of occurrence relative to the cell with the maximum number of observations. Blue and red
contours are 2D Gaussian fits to hydrometeors (blue) and insects (red). Contours represent 90 %, 75 %, 63 %, and 50 % occurrence. Gaussian
fit parameters are displayed in panel (b). The threshold between hydrometeor and insect is indicated by the dashed black line. (c) 1D PDF of
Max(texture). The black line is observations and the red line is fit to two Gaussian distributions. (d) Similar to (a) except for spectra regions
with detected LDR. (e) Similar to (b) except there is only one distribution caused by insect scattering. Contours are 2D generalized Gaussian
fits. (f) Similar to (c) except the red curve is fit to one generalized Gaussian distribution.

tional fits are generalized Gaussian distributions and capture
skewness in the distributions. Note the similarities between
the fitted parameters for the insect populations with and
without LDR measurements. Both distributions have simi-
lar means and standard deviations (i.e., near 10 dB mean and

2.7 dB standard deviations). Also note that the insect distri-
bution in Fig. 7e extends toward the origin and overlaps with
the cloud population shown in Fig. 7b. This overlap causes
difficulty in using a simple threshold to classify hydrometeor
from insect observations. This difficulty was noticed in Luke
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Figure 8. Spectral memberships and binary mask for profile at
19:19:02 UTC on 31 July 2018. The red color indicates hydrom-
eteor membership and the blue color represents insect membership.
(a) Texture algorithm spectral membership. (b) LDR algorithm
spectral membership. (c) Filtered spectral membership. (d) Binary
hydrometeor and insect mask.

et al. (2008). One way to improve the classification is to use a
threshold that is orthogonal to the observed distributions. The
insect and hydrometeor 2D Gaussian functional fits shown in
Fig. 7b and e have correlation coefficients greater than 0.9
and indicate the distributions are close to a 1-to-1 slope. After
creating a line between the hydrometeor and insect distribu-
tions, an orthogonal threshold can be constructed. Figure 7b
and e show the orthogonal threshold developed by analyzing
many hydrometeor and insect observations from 2018 and
2019 (see Appendix A for details). The analysis presented
in Appendix A suggests that the orthogonal threshold has a
true positive rate of about 90 % for both hydrometeor and
insect scattering observations. Due to the distribution over-
lap, a single threshold methodology will not reach a 100 %
true positive rate and additional classification or filtering will
be necessary. One way to improve the classifications due to
distribution overlap or inaccurate thresholds is to apply con-
tinuity filters to remove random or ephemeral samples due to
misclassifications as discussed in Sect. 4.4. Applying the or-
thogonal CoPol texture threshold to the example profile from
19:19:02 UTC, Fig. 8a shows the insect (blue shading) and
hydrometeor (red shading) texture membership classes. Also
in Fig. 8 are the LDR insect–hydrometeor classes, the com-
bined classes, and the profile mask, all of which are discussed
in the next section.

4.2 LDR algorithm branch

This section describes the processing steps of the LDR al-
gorithm (Boxes 5–8 of Fig. 5). In Box 5, an objective noise
threshold nHS(hj ) is estimated from the XPol spectra at each
height (Hildebrand and Sekhon, 1974; Carter et al., 1995).
The XPol spectra with magnitudes greater than nHS(hj )

are defined as signal power (see Eq. 3). Box 6 calculates
the linear depolarization ratio spectra using Eq. (1). The
CoPol and XPol spectra profiles at 04:48:17 UTC from the
precipitation event on 4 April 2019 shown in Fig. 4 are
shown in Fig. 9. The top row of Fig. 9 (Fig. 9a–d) shows
CoPol observations and CoPol texture statistics used in the
CoPol texture algorithm. Figure 9e and f show XPol and
LDR spectra profiles. To estimate regional scattering prop-
erties, the same 5× 3 velocity–height window used in the
texture algorithm is used to calculate regional LDR statis-
tics throughout the SLDR

dB (vi,hj ) spectra profile (Box 7 of
Fig. 5). Figure 9g and h show the mean

[
SLDR

dB (vi,hj )
]

and
SD

[
SLDR

dB (vi,hj )
]

estimates and suggest that insects are
present below 1 km with near zero vertical velocity and
falling hydrometeors are present above 3 km. The insects are
deduced by mean

[
SLDR

dB (vi,hj )
]

between −10 and −5 dB
and the falling hydrometeors by mean

[
SLDR

dB (vi,hj )
]

less
than −20 dB. These inferences are supported by the CoPol
texture statistics (Fig. 9c and 9d) with insects having large
max

[
T dB(vi±2,hj±1)

]
near zero vertical velocities below

1 km and smaller values elsewhere. As with the warm shal-
low cumulus cloud event shown in Fig. 6, there are more
CoPol observations (Fig. 6a–d) than LDR measurements
(Fig. 6e–h) below 1.5 km.

With an objective of separating insect and hydrometeor
scattering regions based on LDR statistics, Fig. 10 shows
2D and 1D PDFs of the LDR statistics estimated for all ob-
servations below 1.5 km (to avoid too many hydrometeor
observations that would prevent any insects from appear-
ing in Fig. 10) for hour 04:00 UTC on 4 April 2019. Fig-
ure 10 contains over 1 million LDR statistic samples each
calculated over a separate 5× 3 spectral region. The distri-
bution near mean

[
SLDR

dB (vi,hj )
]
=−8 dB is due to insect

scattering and the distribution near mean
[
SLDR

dB (vi,hj )
]
=

−20 dB is due to hydrometeor scattering. A threshold of
mean

[
SLDR

dB
]

threshold =−15 dB clearly separates the two dis-
tributions and is indicated with a dashed line in Fig. 10b,
which is consistent with estimates from Matrosov (1991) and
Reinking et al. (1997).

Figure 11a and b show the CoPol texture and LDR mem-
bership classes for this spectra profile. Blue shading indicates
insect scattering and red shading indicates hydrometeor scat-
tering. Note that the texture algorithm identifies both insect
and hydrometeor scattering below 1.5 km while the LDR al-
gorithm only detects a few insects at these lower range gates.
Both algorithms identify hydrometeor scattering above about
3 km.
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Figure 9. Same as Fig. 6 except for the profile at 04:48:17 UTC on 4 April 2019.

Figure 10. Similar to Fig. 7 except for hour 04:00 UTC on
4 April 2019 and for SD(LDR) and mean(LDR) statistics. There
are 1 085 217 samples collected below 1.5 km height.

4.3 Combining CoPol texture and LDR algorithm
classifications

After performing the CoPol texture and LDR algorithms, the
binary insect and hydrometeor spectral classifications from
both algorithms are combined and then filtered (e.g., see
Figs. 8a, b and 11a, b). Initially, the combined spectral clas-
sification is the texture classification because the LDR clas-
sification will always have fewer valid observations than the
CoPol observations. To incorporate the LDR classification,
the combined classification is changed only if the LDR algo-

Figure 11. Same as Fig. 8 except for the profile at 04:48:17 UTC on
4 April 2019.

rithm produced a hydrometeor class when the texture classi-
fication was set to insect class. This logic places more em-
phasis on identifying hydrometeors than insects.

One of the physical attributes of hydrometeor scattering
is that the Doppler velocity spectra span multiple continu-
ous velocity bins and over several range gates. Accordingly,
isolated hydrometeor pixels in the combined spectral classi-
fication are removed by requiring at least seven continuous
hydrometeor pixels in the velocity dimension. All hydrome-
teor pixels not satisfying this constraint are set to the insect
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scattering class. The filtered memberships for the two exam-
ple profiles are shown in Fig. 8c for the warm liquid cloud
event on 31 July 2018 and in Fig. 11c for the precipitation
event on 4 April 2019. The red and blue shading corresponds
to hydrometeor and insect scattering classes, respectively.

The final processing step is to reduce the filtered mem-
bership classes into binary masks indicating the presence of
insect or hydrometeor scattering at each range gate (Box 10
of Fig. 5). The insect and hydrometeor masks are set to unity
if that filtered membership class exists for that range gate
hj . In the case when both insect and hydrometeor scatter-
ing are detected at the same range gate, the hydrometeor
mask is set to unity and the insect mask is set to zero. This
logic places more emphasis on identifying robust hydrome-
teor masks and defining masks resulting from either insect
or hydrometeor scattering at each range gate. Figures 8d and
11d show the binary insect and hydrometeor masks for the
two example profiles. Both masks are saved in output data
files and have the variable names insect_mask_raw and hy-
dro_mask_raw (Boxes 11 and 12 of Fig. 5). The suffix raw
designates that these masks were estimated from individual
profiles and without any temporal information from neigh-
boring profiles, which is discussed in Sect. 4.4.

In addition to the binary insect mask, an insect activity in-
dex is generated by counting the number of insect scattering
velocity bins at each height. This insect index Iinsect(hj ) is
defined as

Iinsect
(
hj
)
=

imax∑
i=1

Cfiltered
insect

(
vi,hj

)
, (6)

where Cfiltered
insect (vi,hj ) is the insect spectral classification and

has a value of either 0 or 1. This insect index is not an esti-
mate of the insect number concentration because the magni-
tude of the insect scattering is not being taken into account.
The authors hypothesize that the insect index should be re-
lated to insect number density, as the breadth of insect ve-
locities should increase as the number of insects increases.
The insect index is available in the output data files with the
variable name insect_index_raw.

4.4 Quality control (QC) filtering of the cloud profile
mask

Figure 12 shows the time–height cross section of observed
CoPol KAZR reflectivity (Fig. 12a), the raw hydrome-
teor mask (Fig. 12b), a time–height filtered hydrometeor
mask (Fig. 12c), and the insect index (Fig. 12d) for hour
19:00 UTC on 31 July 2018. This is the same event shown
in Figs. 1 and 2, except with the vertical axis limited to 3 km
height. The ceilometer cloud base height is shown in each
panel with black dots. The blue and red plus symbols are
cloud top and base determined from the COGS stereo cam-
era system, which is discussed in more detail in Sect. 5. The
hydrometeor mask in Fig. 12b is the raw mask produced

Figure 12. Measurements and retrievals for hour 19:00 UTC on
31 July 2018. (a) CoPol reflectivity (dB). (b) Retrieved hydrome-
teor raw mask (red shading). COGS-derived 6 km× 6 km domain
average cloud base (red symbols) and cloud top (blue symbols).
(c) Same as panel (b) expect for the retrieved hydrometeor QC1
mask. (d) Retrieved insect activity index. The black symbols are
ceilometer-derived cloud base.

from each spectra profile. These raw hydrometeor masks
contain random misclassified pixels of hydrometeors below
the ceilometer cloud base height. Most of these false posi-
tive hydrometeor mask pixels are removed by sequentially
applying two time–height quality control filters.

The first quality control filter, named QC1 (shown in
Fig. 12c), removes temporal outliers by applying a three-
member temporal continuity filter, which retains all three val-
ues if three consecutive values are present. The QC1 filter
also inserts up to three consecutive hydrometeor mask pix-
els in vertical profiles to fill small gaps in the raw hydrome-
teor mask. The second quality control filter, named QC2 (not
shown), applies a low-pass filter to the QC1 filtered mask
by moving a 3× 3 time–height (approximately 12 s by 90 m)
continuity constraint throughout the domain to robustly iden-
tify hydrometeors that are persistent in time and height. Both
the QC1 and QC2 filtered hydrometeor masks are available
in the output data files with variable names hydro_mask_qc1
and hydro_mask_qc2. Figure 12d shows the insect index and
estimates the number of velocity bins in the spectra that con-
tained insect scattering. The color scale is logarithmic with
a maximum value 256 representing the number of veloc-
ity bins in the spectra. The QC1 hydrometeor mask is plot-
ted for the 4 April 2019 precipitation event in Fig. 4d. The
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mask identifies the shallow clouds near 1.5 km from about
2–13 min and the precipitating anvil at the beginning of the
hour between 3–4 km that descends to the lowest range gate
just after minute 20. The hydrometeor mask below 1.5 km
that starts at about minute 21 and continues until the end of
the hour except for a shallow gap between minutes 50–55
is due to precipitation at these lower heights, as indicated in
Fig. 11c. There is strong agreement between the ceilometer
cloud base height estimates and the hydrometeor mask before
minute 20. After this time, the hydrometeor mask identifies
raindrops, while the ceilometer identifies cloud base. COGS
measurements are unavailable for comparison purposes dur-
ing this event because COGS is an optical system requiring
daylight.

5 Comparing cloud mask with independent
measurements

Figures 4 and 12 show significant agreement between
ceilometer cloud base estimates and retrieved QC1 hydrome-
teor masks. Figure 12 also shows agreement between COGS
cloud base and top estimates with the QC1 hydrometeor
mask. In comparing the three products, the KAZR hydrom-
eteor masks and ceilometer cloud base estimates appear as
discrete cloud events. Conversely, the COGS estimates ap-
pear continuous in time, as if COGS is detecting a persistent
cloud layer. This difference is because KAZR and ceilometer
are “soda-straw” observations and COGS is a 6 km× 6 km
domain-averaged product produced from three pairs of stereo
cameras positioned around the radar and ceilometer (Romps
and Öktem, 2018). Figure 12c shows that when the radar and
ceilometer both detect clouds, COGS also had a similar cloud
base height estimate. The ceilometer and radar cloud bases
also showed consistency even at the cloud edges (see near
minute 35). Regarding cloud top estimates, COGS estimates
are higher than the radar because COGS is a domain average.
The Supplement contains images of the QC1 hydrometeor
mask, ceilometer, and COGS retrievals for 47 d correspond-
ing to 2018 and 2019 LASSO shallow cloud events (LASSO,
2020). The COGS product is available only for shallow cu-
muliform clouds and only during daylight hours.

Figure 13 compares hydrometeor mask QC1 column bot-
toms with ceilometer cloud bases for the 47 LASSO days.
The hydrometeor mask QC1 columns were at least 90 m
thick (i.e., three consecutive range gates). Using the same
format as Figs. 7 and 10, Fig. 13b shows the 2D distribution
of height differences with the line graph showing 1D PDF.
Over 70 % of the 12 141 simultaneous profiles had height
differences within ±100 m, which represents ±3 30 m radar
range gates. There is a small skewness to the height differ-
ence PDF (Fig. 13a) that is consistent with the ceilometer
detecting clouds before the radar detects hydrometeors. Also,
during the few precipitation events, the hydrometeor mask
bottom was significantly lower than the ceilometer cloud

Figure 13. Difference in the hydrometeor mask QC1 column bot-
tom and ceilometer cloud base height using 47 d at SGP during
2018 and 2019. There were 12 141 profiles with simultaneous hy-
drometeor mask QC1 and ceilometer cloud bases. (a) 1D PDF of
height difference defined as (hydrometeor mask column bottom)
– (ceilometer cloud base) (m) with 30 m resolution corresponding
to radar range resolution. (b) Colors are 2D distributions of height
difference vs. ceilometer cloud base. Colors represent the percent-
age of occurrence relative to the cell with the maximum number
of observations. The artifact at negative height differences and low
ceilometer cloud base is due to the radar first range gate at 570 m.

base as the hydrometeor mask detects falling raindrops far
below the ceilometer detected cloud base.

6 Conclusions

In addition to detecting cloud particles, vertically pointing
cloud radars are sensitive enough to detect individual insects.
If insect contamination is not identified and removed, then
radar-derived cloud properties will be incorrect and will not
help with validating cloud resolving models or climate sim-
ulations. This study used polarimetric radar observations to
develop two insect–hydrometeor detection algorithms. The
two algorithms use different radar scattering principles to
identify small velocity–height regions in the Doppler ve-
locity power spectra profile resulting from either insect or
hydrometeor scattering. The results of both algorithms are
combined and then filtered to produce single value insect
and hydrometeor masks at each range gate. The backscat-
tered power from hydrometeors and insects is larger in the
CoPol channel than the XPol channel, leading to negative
LDR values. This difference in sensitivity leads to this study
finding that KAZR XPol spectra observations observed fewer
insects than KAZR CoPol observations. This implies that us-
ing just a polarimetric signal processing method to identify
insects will not identify all insect clutter affecting CoPol ob-
servations and that insect clutter mitigation methods must use
CoPol observations to identify all insect clutter in the CoPol
channel.

One algorithm uses the texture of CoPol Doppler veloc-
ity power spectra to identify small velocity–height regions of
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spectra attributed to insect or hydrometeor scattering. Since
insects are individual point targets, their radar power return
is confined to narrow intervals of Doppler velocity and range
gates on the order of 1–3 velocity bins (0.04 to 0.12 m s−1)
and 1–3 range gates (30 to 90 m). In contrast, cloud particles
and raindrops occur in distributions that extend over many
velocity bins and several range gates, on the order of 5–150
velocity bins (0.2 to 7 m s−1) and 3–150 range gates (90 to
4500 m). The CoPol and XPol Doppler velocity power spec-
tra from insect scattering have large variability, or texture,
while scattering from cloud particles and raindrops produce
smoother, less variable spectra. The CoPol texture algorithm
uses the texture information to identify small regions of in-
sect and hydrometeor scattering. The CoPol texture algo-
rithm can be applied to any cloud radar system collecting
Doppler velocity power spectra and does not require a cross-
polarization channel.

The other algorithm uses the linear depolarization ratio
(LDR) at each point in the Doppler velocity power spectra
to identify regions of scattering due to spherical raindrops,
asymmetric ice particles, or asymmetric insects. Unlike pre-
vious studies, this work uses the LDR at each spectra bin.
After identifying small velocity–height regions of insect and
hydrometeor scattering in both algorithms, the spectra clas-
sifications are combined and then filtered to account for con-
tinuity in the Doppler velocity and vertical range dimen-
sions. The filtered spectra classifications are reduced to bi-
nary affirmative insect and hydrometeor masks with a sin-
gle value at each range gate. An insect activity index is esti-
mated at each range gate by counting the number of Doppler
velocity spectra bins with insect scattering. Future studies
will use insect activity and vertical air motion estimates to
explore whether insects are passive tracers or actively pro-
pelling themselves through the atmosphere. Often, insects
occur at the same height as clouds and during the onset of
precipitation. While these are interesting phenomena, the fo-
cus of this work is producing robust hydrometeor masks to
help identify cloud boundaries, which can be used, for ex-
ample, to study the evolution of shallow cumulus clouds in
the planetary boundary layer (Gustafson et al., 2017). Us-
ing over 12 000 simultaneous ceilometer and radar profiles,
it was found that over 70 % of the hydrometeor mask column
bottoms were within ±100 m of the ceilometer cloud base
(i.e.,±3 30 m radar range gates). The hydrometeor mask col-
umn bottom was slightly higher than the ceilometer cloud
base. This is to be expected, as the ceilometer detects cloud
particles at lower heights than the radar detecting hydrome-
teors within the cloud.

The Supplement includes sample images of observed
KAZR reflectivity, retrieved hydrometeor masks, and veri-
fication observations from ceilometer and COGS. The pro-
cessing described herein was applied to KAZR observations
for April–October in 2018 and 2019 summer seasons at the
Southern Great Plains (SGP) facility. The insect and hydrom-
eteor masks for these months are available online in the DOE
ARM archive (Williams, 2021).
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Appendix A

This appendix uses a large, hand-edited dataset to first ex-
plore the representativeness of spectral region texture distri-
butions and then to develop an orthogonal threshold to clas-
sify hydrometeors from insects in the 2D texture distribu-
tions. Over 75 h of KAZR observations from 2018 and 2019
at SGP were manually inspected to contain only hydromete-
ors or insect scattering observations. Figure A1 illustrates ex-
amples of manual classified hydrometeor and insect bound-
aries shown as gray shaded areas superimposed onto KAZR
CoPol reflectivity. The top panel (Fig. A1a) shows hydrom-
eteor boundaries from 4 to 15 km for hour 12:00 UTC on
3 August 2019. There are no insects detected above 4 km
and all observations are due to hydrometeor scattering. Fig-
ure A1b shows insect boundaries from the lowest resolved
range gate to 3 km for hour 09:00 UTC on 6 June 2019. The
ceilometer-derived cloud base indicates clouds are detected
above 3.5 km between minutes 14 and 37. In this “truth”
dataset, there were over 15 h of hydrometeor profiles and
over 60 h of insect profiles. The manually classified dataset
contained over 47 million CoPol and over 20 million LDR
spectral regions with five velocity bins and three range gates
(i.e., 0.186 m s−1 by 90 m).

The texture, T dB, spectral region statistics were calculated
for the hydrometeor and insect scattering truth datasets. The
texture statistics of SD

[
T dB] and max

[
T dB] are shown in

Fig. A2 as 1D and 2D distributions following the format
shown in Fig. 7. The hydrometeor scattering observations
are shown in the left panels (Fig. A2a, b, and c) and the
insect scattering observations are shown in the right panels
(Fig. A2d, e, and f). The colors indicate the observed distri-
butions, and the contour lines represent 90 %, 75 %, 63 %,
and 50 % occurrence levels of a fitted 2D generalized Gaus-
sian function. The fitted parameters shown in Fig. A2b and
e are the mean (µx and µy), standard deviation (σx and
σy), and skewness (γx and γy) of a 2D generalized Gaussian
function. The subscripts x and y correspond to the horizon-
tal (max

[
T dB]) and vertical (SD

[
T dB]) axis parameters, re-

spectively. Note that the correlations of the generalized Gaus-
sian functional fits are estimated separately for both datasets
and both estimates are greater than 0.9 indicating that the in-
dividual distributions have nearly 1-to-1 slopes.

To construct an orthogonal classification threshold to di-
vide observations into either hydrometeor or insect scatter-
ing classes, a line is first constructed between the two distri-
butions and then an orthogonal slope is estimated from that
original line. The slope between the two distributions is esti-
mated from the Gaussian distribution mean values using

mobservations =

(
µinsect
y −µ

hydro
y

)
(
µinsect
x −µ

hydro
x

) , (A1)

Figure A1. Examples of manual hydrometeor and insect classifi-
cation superimposed on KAZR CoPol reflectivity at SGP. (a) The
gray bounding box between 4 and 15 km contains manually iden-
tified hydrometeor scattering observations for hour 12:00 UTC on
3 August 2019. (b) The gray bounding box from the lowest range
gate to 3 km contains manually identified insect scattering observa-
tions for hour 09:00 UTC on 6 June 2019.

where the numerator is the change in SD
[
T dB] and the de-

nominator is the change in max
[
T dB]. The equation of the

line between the two distributions is written in Fig. A2b and e
and is shown with the solid black line. The asterisks indicate
the distribution mean locations, specifically,

(
µ

hydro
x ,µ

hydro
y

)
and

(
µinsect
x ,µinsect

y

)
.

Orthogonal thresholds will have a slope given by

γthreshold =−

[
1

mobservations

]

=−


(
µinsect
x −µ

hydro
x

)
(
µinsect
y −µ

hydro
y

)
 . (A2)

Using the threshold slope in Eq. (A2), many orthogonal
threshold lines were constructed and the two truth datasets
were classified using each threshold. The goodness of classi-
fication was determined using a receiver operating character-
istic (ROC) curve with true positive rates (TPRs) estimated
as the ratio of number of true positive (TP) classifications to
total number of observations (N ) using

TPRhydro =
T Phydro

Nhydro
(A3a)

TPRinsect =
T Pinsect

Ninsect
. (A3b)

Figure A3 shows the TPRs for both datasets as the parallel
thresholds moved graphically from left to right in Fig. A2b
and e with increasing max

[
T dB]. Note that TPRhydro starts

at a low value and increases as the threshold moves to larger
max

[
T dB]. The TPRinsect has an opposite behavior. The in-

tersection of TPRinsect = TPRhydro indicates the same true
positive rate for both datasets. The intersection has a true

https://doi.org/10.5194/amt-14-4425-2021 Atmos. Meas. Tech., 14, 4425–4444, 2021



4440 C. R. Williams et al.: Identifying insects, clouds, and precipitation

Figure A2. Observed spectral region texture distributions using the manual classified (a–c) hydrometeor scattering observations and (d–
f) insect scattering observations. The 1D and 2D distribution formats are similar to Fig. 7. The colors in (b) and (e) represent observed
distributions normalized to the pixel with the most observations. The contours are the 90 %, 75 %, 63 %, and 50 % occurrences of a fitted
2D generalized Gaussian function. The mean, standard deviation, and skewness parameters are listed in (b) for the hydrometeor scattering
distribution and in (e) for the insect scattering distribution. The solid line and equation represent a line between the hydrometeor and insect
scattering distribution centers with the asterisks placed at the distribution mean values. The dashed line is the orthogonal threshold line that is
the intersection of the hydrometeor and insect true positive rates (TPRs). The solid and dashed lines are orthogonal but appear non-orthogonal
in the panels because of axis scaling.

positive rate over 0.9 and occurs when max
[
T dB] is equal

to 4.8.
The LDR spectral region statistics were calculated for

both truth datasets. The LDR statistics of SD[LDR] and
mean[LDR] are shown in Fig. A4 as 1D and 2D distributions
following the format shown in Fig. 10. Similar to Fig. A2,
the hydrometeor scattering observations are shown in the left
panels (Fig. A4a, b, and c) and the insect scattering observa-
tions are shown in the right panels (Fig. A4d, e, and f).

Figure A3. True positive rate (TPR) for truth hydrometeor and in-
sect scattering observations for different orthogonal thresholds. As
max

[
T dB

]
increases, the threshold moves from left to right up the

curve y = 0.279x−0.095 shown in Fig. A2b and e. The solid line is
TPRhydro and the dashed line is TPRinsect. The intersection occurs

when max
[
T dB

]
= 4.8.
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Figure A4. Observed spectral region linear depolarization ratio (LDR) distributions using the manual classified (a–c) hydrometeor scattering
observations and (d–f) insect scattering observations. The 1D and 2D distribution formats are similar to Figs. 10 and A2.
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Code availability. The code used to generate the insect, cloud, pre-
cipitation, and hydrometeor masks stored on the DOE ARM archive
is available upon request from the lead author. With this source
code, users can repeat the analysis presented in this study and de-
velop improved insect–cloud and insect–precipitation detection al-
gorithms for their vertically pointing radar observations.

Data availability. Original raw KAZR spectra are available on
the DOE ARM archive (https://doi.org/10.5439/1095603, ARM
user facility, 2011a; https://doi.org/10.5439/1095604, ARM user
facility, 2011b). The algorithms described herein were applied
to 14 months (April–October 2018 and 2019) of KAZR obser-
vations from the DOE ARM Southern Great Plains (SGP) cen-
tral facility. The produced insect and hydrometeor mask data files
in netCDF format, hourly images in TIF format, and animations
of individual profiles in MP4 format are available on the DOE
ARM archive as an ARM Principal Investigator (PI) Data Product
(https://doi.org/10.5439/1772490, Williams, 2021).

Supplement. Selected images of observed KAZR reflectiv-
ity, retrieved hydrometeor masks, and verification observa-
tions from ceilometer and COGS are available in the Supple-
ment. The supplement related to this article is available online
at: https://doi.org/10.5194/amt-14-4425-2021-supplement.
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