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ABSTRACT

The two-dimensional (2D) size distribution of clouds in the horizontal plane plays a central role in the

calculation of cloud cover, cloud radiative forcing, convective entrainment rates, and the likelihood of pre-

cipitation. Here, a simple method is proposed for calculating the area-weighted mean cloud size and for

approximating the 2D size distribution from the 1D cloud-chord lengths measured by aircraft and vertically

pointing lidar and radar. This simplemethod (which is exact for square clouds) compares favorably against the

inverseAbel transform (which is exact for circular clouds) in the context of theoretical size distributions. Both

methods also perform well when used to predict the size distribution of real clouds from a Landsat scene.

When applied to a large number of Landsat scenes, the simple method is able to accurately estimate the mean

cloud size. As a demonstration, the methods are applied to aircraft measurements of shallow cumuli during

the Routine ARM Aerial Facility (AAF) Clouds with Low Optical Water Depths (CLOWD) Optical Ra-

diativeObservations (RACORO) campaign, which then allow for an estimate of the true area-weightedmean

cloud size.

1. Introduction

For a given patch of sky, the distribution of horizontal

cloud sizes plays an important role in setting the total

cloud cover (e.g., Koren et al. 2008), the cloud radiative

forcing (e.g., Marshak and Davis 2005), convective

entrainment rates (e.g., Stirling and Stratton 2012;

Neggers 2015), and the likelihood of precipitation

(e.g., Jiang et al. 2010). Despite the importance of the

cloud size distribution, it is not often measured directly.

Instead, during field campaigns and at meteorological

stations, cloud sizes are usually inferred indirectly from

linear sampling by aircraft, radar, lidar, or radiometer.

Unfortunately, the distribution of cloud-chord lengths

measured in this way is not the same as the distribution

of cloud sizes. This mismatch is primarily caused by two

effects: 1) an off-center sampling of a cloud will tend to

yield a chord that is smaller than the true diameter,

biasing the distribution to smaller sizes, and 2) large

clouds are more likely to be sampled than small clouds,

biasing the distribution to larger sizes. The question

addressed here is how to map from the observed

distribution of cloud-chord lengths to the actual distri-

bution of cloud sizes.

In this discussion, ‘‘linear sampling’’ refers to one of

the following: either that the clouds at a particular

height are sampled along a line, or that some vertically

integrated cloud indicator is sampled along a line. For

example: an aircraft records the presence of cloudy

air along a line at its flight altitude; at each height, a

vertically pointing lidar or radar records the presence

of cloudy air along a line parallel to the wind direction;

and a vertically pointing microwave radiometer records

a vertically integrated indicator of cloudy air along a

line parallel to the mean wind direction within the rel-

evant cloud layer. Other examples include nadir-

pointing spaceborne radar and lidar, which sample

clouds at a given height along a line parallel to the

satellite’s orbit. As depicted in Fig. 1, these measure-

ments give us a set of lengths Li of sample cloud

chords, with i ranging from one to the total number of

cloud chords that were sampled. If we bin these Li

and normalize appropriately, we get the distribution of

detected cloud chords P(L) (m22), where P(L)dL isCorresponding author: David M. Romps, romps@berkeley.edu
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the probability per distance sampled of detecting a

chord between L and L1 dL.

As mentioned above, the cloud-chord distribution

P is not the same as the cloud size distribution, which we

will denote by n (m23). Defining D as some measure of

the linear size of a cloud (e.g., the square root of its

horizontal area), n(D)dD is the number of clouds per

horizontal area that have sizes betweenD andD1 dD.

The fact that P and n are different distributions is

readily apparent from the fact that they have different

units. The central question of this paper, therefore, is

how to map from P to n.

Some previous authors have solved this problem by

assuming that clouds are circular, which allows the

relationship between P and n to be written down in

terms of the Abel transform and its inverse (Vul’fson

1964; Yau and Rogers 1984). That method, however,

is a bit cumbersome and of questionable relevance. It

is cumbersome because it expresses n as an integro-

differential function of P with a divergent integrand,

which can be difficult to evaluate when working with

sparse data. And its relevance is questionable because

clouds are not circular; for real, noncircular clouds, the

Abel transform gives only an approximation of n. Since

this method is only approximate, it is worth asking

whether there are other approximate methods that are

simpler to implement but that perform nearly as well.

The next section presents such a method.

For the reader in a rush to calculate cloud sizes, there

are four key equations. The first is Eq. (5), which states

the obvious by saying that the best estimate of the cloud

fractional area is equal to the sum of the cloud-chord

lengths divided by the total sampling distance. The

second is Eq. (11), which gives an expression for the

area-weighted mean cloud size. Finally, there are two

methods for calculating the distribution of cloud sizes

from the distribution of measured cloud chords. The

first is the simple method given in Eq. (8), which is

easy to use, is guaranteed to give nonnegative number

concentrations, and does a decent job of approximating

the true distribution. The second is the Abel-transform

method given in Eq. (14), which is more cumbersome to

use, is potentially prone to generating negative number

concentrations, but is typically better at approximating

the true distribution.

2. Estimation methods

For simplicity in this section, let us assume that clouds

are convex in the x–y plane so that any linear transect of

the cloud is a single line segment. Let us characterize

clouds by their maximum width D transverse to the

sampling direction. Let us denote by n(D)dD the

number density (m22) of clouds with transverse widths

in [D, D1 dD]. Note that n(D) has units of per cubic

meter. For a cloud of width D, let us say that we

‘‘sample’’ it the moment our detector passes through a

chosen transverse line. For example, for a circular cloud,

we could choose its transverse diameter, and, for a

square cloud oriented with sides parallel and perpen-

dicular to the sampling direction, we could choose its

transverse midline. A cloud of transverse width D pres-

ents a cross section of D to the sampling instrument,

so the probability of sampling a cloud of width in

[D, D1 dD] in a distance dx is the number density

n(D)dD times the cross section D times the sampling

distance dx—that is, n(D)dDDdx. Assuming that

our instrument is sampling a cloud of width D, let us

denote by p(LjD)dL the probability that it samples a

cloud-chord length in [L, L1dL]. The probability

density of sampling a cloud length L is

P(L)5

ð‘
0

dDn(D)Dp(LjD) . (1)

Here, P(L)dL is the probability per sampling distance

of detecting a cloud chord with a length between L and

L 1 dL.

Now, consider the cloud fractional area s0, which is

the fraction of the horizontal area (either at a given

height or projected) that is occupied by clouds. The

value of s0 can be obtained directly from either n or P.

If we know the mean area of clouds with widthD, which

we will denote by A(D), then we can define the cloud

fractional-area distribution s(D) as

s(D)5 n(D)A(D) . (2)

Then, s0 is given by

FIG. 1. An airplane, on a linear flight path, will sample

cloud-chord lengths Li, with i ranging from 1 to the total

number of clouds sampled. Binning those Li and normalizing

appropriately gives the distribution of chord lengths P(L),

where P(L)dL is the probability per distance traveled of

detecting a chord between L and L1dL. The question

addressed in this paper is how to convert from P(L) to the

cloud size distribution n(D), where n(D)dD is the number

concentration (i.e., number per horizontal area) of clouds with

linear sizes between D and D 1 dD.
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s
0
5

ð‘
0

dDs(D) . (3)

Here, s(D)dD is the fraction of area covered by clouds

with widths between D and D 1 dD. Alternatively, we

can obtain s0 from P(L) through the relation

s
0
5

ð‘
0

dLP(L)L . (4)

Given the exact s(D) and P(L), both of these equations

give the exact value of s0. Of course, the simplest way to

estimate s0 is by direct use of the observed chord

lengths Li using

s
0
5

�
N

i51

L
i

Total sampling distance
, (5)

where N is the total number of cloud chords that were

sampled. These relations are all fairly straightforward,

but the real challenge is figuring out how to calculate

n(D) from P(L). For circular clouds and for square

clouds, this problem can be solved exactly.

a. Square clouds (simple method)

Let clouds be nonoverlapping, square, and with sides

oriented parallel to the sampling direction. For these

square clouds,

p(LjD)5 d(L2D) , (6)

where d is the Dirac delta function. Then, by Eq. (1),

P(L)5Ln(L) . (7)

This is trivial to invert to get the expression for n in

terms of P,

n(D)5 n
simple

(D)[
P(D)

D
. (8)

For these square clouds, nsimple is exactly equal to n;

there was no off-center sampling bias to begin with

in P(L), and the large-cloud sampling bias has been

corrected by the division of P by D. Since A(D)5D2,

we can combine Eqs. (2) and (8) to get

s
simple

(D)5P(D)D , (9)

which is an expression that has been used by Rodts

et al. (2003) and Berg and Kassianov (2008). This

simple method for approximating n and s is easily

applied to any chord-length distribution P, including

those constructed from sparse measurements.

Another benefit of this simple method is that the area-

weighted mean cloud size can be calculated directly

from the set of observed chord lengths. The area-

weighted mean cloud size can be written as the integral

over D of ssimple(D)D divided by the integral over D of

ssimple(D), which, by Eq. (9), is equal to the integral

over L of P(L)L2 divided by the integral over L of

P(L)L. Therefore, the simple-method estimate of the

area-weighted mean cloud size hDisimple can be calcu-

lated directly from the observed chord lengths Li as

hDi
simple

5
�
N

i51

L2
i

�
N

i51

L
i

, (10)

where N is the total number of sampled cloud chords.

As we will see in sections 4 and 5, this estimate of

the area-weighted mean cloud size is biased low

by ;40% for real clouds (which are not sampling-

aligned squares), so we can attempt to correct this

bias by writing

hDi5 k

�
N

i51

L2
i

�
N

i51

L
i

, (11)

where k’ 1:76 0:3 is a correction factor (see section 5

for an explanation of this factor).

b. Circular clouds (Abel method)

Let clouds be nonoverlapping and circular. For these

circular clouds,

p(LjD)5
L

D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 2L2

p H (L)H (D2L) , (12)

where H is the Heaviside unit step function. Then,

by Eq. (1),

P(L)5LH (L)

ð‘
L

dD
n(D)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 2L2

p . (13)

This is the Abel transform. The inverse Abel transform

then gives us the expression for n in terms of P:

n(D)5 n
Abel

(D)[2
2D

p
H (D)

ð‘
D

dL

d

dL

�
P(L)

L

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 2D2

p . (14)

For these circular clouds, nAbel is exactly equal to n;

both the off-center sampling bias and the large-cloud
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sampling bias have been corrected by the inverse

Abel transform. Since A(D)5pD2/4, we can combine

Eqs. (2) and (14) to get

s
Abel

(D)52
D3

2
H (D)

ð‘
D

dL

d

dL

�
P(L)

L

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 2D2

p . (15)

Because of the derivative and the divergent integrand,

this method can be difficult to apply to sparse observa-

tional data. It can even predict negative values for n and

s in cases whereP(L)/L increases withL. This can occur

either because the sizes, shapes, and orientations of

the clouds guarantee that particular failure of the Abel

method, or because spurious fluctuations in P(L)/L

caused by insufficient sampling lead to negative values

in the numerical calculation of nAbel.

3. Evaluation against theoretical distributions

As a first test of these methods, we will evaluate them

against analytical size distributions. Consider a field of

clouds with a power-law size distribution of the form

n(D)5

�
n
0

D
0

��
D

D
0

�b

H (D)H (D
0
2D) , (16)

where n0 (m
22), D0 (m), and b (unitless) are constants.

In order for this distribution to give a finite cloud

fractional area s0, b must be greater than 23, which

we will assume henceforth.

a. Power-law squares

Consider clouds that are nonoverlapping, square, and

oriented with edges exactly parallel or perpendicular

to the sampling direction. This gives them the p(LjD)

given by Eq. (6). Let us also assume that their widths

D are distributed according to the power-law relation

in Eq. (16).

For square clouds, the area per cloud is A(D)5D2,

so Eq. (3) tells us that the cloud fractional area s0 and

n0 are related by

s
0
5

1

b1 3
n
0
D2

0 . (17)

Note that n0 is not the number density here. The

number density of clouds is given by
Ð ‘
0dDn(D), which

is infinite for 23, b , 21 even though n0 and s0 are

finite for all b . 23. Using Eqs. (16), (7), and (17), we

find n and P to be

n(D)5
(b1 3)s

0

D3
0

�
D

D
0

�b

H (D)H (D
0
2D) and (18)

P(L)5
(b1 3)s

0

D2
0

�
L

D
0

�b11

H (L)H (D
0
2L) . (19)

A sample field of such clouds, with D0 5 1km, s0 5 0.1,

and b5 22, is shown in Fig. 2a. Since the finite resolution

of the imageprecludes theplotting of infinitely small clouds,

clouds with sizes less than 50m are omitted. Figure 2b

plots n(D) and P(L) in gray and blue, respectively.

What if, in the real world, our aircraft or vertically

pointing instrument measures P(L) of the form given

by Eq. (19)? Howwould we reconstruct n(D)? From the

previous section, we know we have two approaches: we

can pretend the clouds are square (i.e., use the simple

method) or we can pretend the clouds are circular

(i.e., use the Abel method).

The simple method for estimating n from P, as given

by Eq. (8), was derived from square clouds, so it should

be exact in this case of square clouds. Indeed, the red

curve in Fig. 2b, which plots Eq. (8) applied to the P(L)

from Eq. (19), matches n (the gray curve) exactly. The

Abelmethod, on the other hand, is exact only for circular

clouds, so it should only represent n approximately in

this case. Indeed, the green curve in Fig. 2b, which plots

Eq. (14) applied to the P(L) from Eq. (19), deviates

slightly from n (the gray curve) at the largest sizes.

b. Power-law circles

Now, consider clouds that are nonoverlapping and

circular. This gives them the p(LjD) given by Eq. (12).

Let us also assume that their diametersD are distributed

according to the power-law relation in Eq. (16).

For circular clouds, the area per cloud isA(D)5pD2/4,

so Eq. (3) tells us that the cloud fractional area s0 and n0

are related by

s
0
5

p

4

1

b1 3
n
0
D2

0 . (20)

Using Eqs. (16), (13), and (20), we find n and P to be

n(D)5
4(b1 3)s

0

pD3
0

�
D

D
0

�b

H (D)H (D
0
2D) and

(21)

P(L)5
2(b1 3)s

0

pD2
0

�
L

D
0

�b11� ffiffiffiffi
p

p G(2b/2)

G(1/22 b/2)

2B
L2/D2

0

(2b/2, 1/2)

�
H (L)H (D

0
2L) , (22)

where G is the Euler gamma function and B is the

incomplete beta function. A sample field of such clouds,

withD05 1 km,s05 0.1, and b522, is shown in Fig. 3a.

Again, clouds with sizes less than 50m are omitted.
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Figure 3b plots n(D) and P(L) in gray and blue,

respectively.

What if, in the real world, our aircraft or vertically

pointing instrument measures a P(L) of the form given

by Eq. (22)? How would we reconstruct n(D)? From

the previous section, we knowwe have two approaches:

we can pretend the clouds are square (i.e., use the

simple method) or we can pretend the clouds are

circular (i.e., use the Abel method).

The Abel method for estimating n from P, as given

by Eq. (14), was derived from circular clouds, so it

should be exact in this case of circular clouds. Indeed,

the green curve in Fig. 3b, which plots Eq. (14) applied

to the P(L) from Eq. (19), matches n (the gray curve)

exactly. The simple method, on the other hand, is exact

only for square clouds, so it should only represent n

approximately in this case. Indeed, the red curve in

Fig. 3b, which plots Eq. (8) applied to the P(L) from

FIG. 2. (a) A sample field of square clouds generated from the n given by Eq. (18) for the case of D0 5 1 km,

s0 5 0:1, and b522. (b) For this case, plots of n(D) from Eq. (18) (gray), P(L) from Eq. (19) (blue), nsimple as

calculated from Eq. (8) applied to the P(L) fromEq. (19) (red), and nAbel as calculated fromEq. (14) applied to the

P(L) from Eq. (19) (green).

FIG. 3. (a) A sample field of circular clouds generated from the n given by Eq. (21) for the case of D0 5 1 km,

s0 5 0:1, and b522. (b) For this case, plots of n(D) from Eq. (21) (gray), P(L) from Eq. (22) (blue), nsimple

calculated from Eq. (8) applied to the P(L) fromEq. (22) (red), and nAbel as calculated fromEq. (14) applied to the

P(L) from Eq. (22) (green).
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Eq. (22), deviates slightly from n (the gray curve)

at the largest sizes. Overall, though, it is remarkable

how well both methods work for both square and

circular clouds.

To quantify the error in the simple method in this case

of circular clouds, we can compare the area-weighted

mean size calculated with nsimple with the area-weighted

mean size calculated with n. The area-weighted mean

cloud size hDi is given by

hDi5

ð‘
0

dDs(D)D

ð‘
0

dDs(D)

. (23)

Similarly, we can define hDiAbel and hDisimple by equiv-

alent equations using sAbel and ssimple from Eqs. (15)

and (9), respectively. In this case of circular clouds,

sAbel is the same as the true s, and they give an area-

weighted mean size of

hDi
Abel

5 hDi5 b1 3

b1 4
D

0
. (24)

The simple method, on the other hand, uses Eq. (22)

in Eq. (9) to get ssimple, and then uses that expression

in Eq. (23), which yields

hDi
simple

5
8

3p

b1 3

b1 4
D

0
. (25)

Regardless of b, the ratio of these two estimates is

8/3p ’ 0.85, a fact noted previously by Rodts et al.

(2003). Therefore, the simple method gives an area-

weighted mean size for circular clouds that is 15%

smaller than that given by the Abel method. This is very

close to the difference between these two methods

when applied to Landsat imagery and aircraft data, as

we will see in the next sections.

4. Evaluation against a Landsat scene

In reality, clouds are neither squares nor circles.

To evaluate these inversion methods in a realistic

cloud scene, we will use a Landsat image of maritime

cumuli, which is shown (in negative, to save printer

ink) in Fig. 4a. This image (Landsat scene identifier

LC80100432013364LGN00) is about 200 km on a side

with a resolution of 30m. It was acquired at 1521

UTC 30 December 2013 over the Atlantic Ocean,

about 400 km east of the Bahamas.

Figure 4 shows the image processing to which this

scene is subjected. The original image (Fig. 4a) is ro-

tated and cropped (Fig. 4b). Figure 4c zooms into one

patch of the image. The scene is then filtered to set

the ocean to white (Fig. 4d) and then to set all the

clouds to black (Fig. 4e). Individual clouds are iden-

tified as connected patches of black; these individual

clouds are colored in Fig. 4f. The D for each cloud

is defined as the square root of its area. Although

Figs. 4c–f show only a subset of the image, which is

replicated in Fig. 5a, the entire scene is used in the

calculation of P and n.

Since the scene is dominated by small clouds, the

cloud sizes are sorted into nine bins that are loga-

rithmically spaced. We then obtain n(D) by normal-

izing the counts in each bin by the width of the bin and

the total area of the Landsat scene. This is plotted as

the gray curve in Fig. 5b. To calculate P(L), a synthetic

flight path is generated that starts in the upper-left

corner of the scene, goes to the upper-right corner,

turns around and moves down one row of pixels, flies

back to the left edge, turns around and moves down

one row, and repeats until it reaches the lower-right

corner. This produces one continuous flight path

that is roughly 1 000 000 km long. The observed chord

lengths are then sorted into nine logarithmically

spaced bins. We then obtain P(L) by normalizing the

counts in each bin by the width of the bin and the total

length of the flight path. This is plotted as the blue

curve in Fig. 5b.

How do the Abel method and the simple method

perform in this case of real clouds? Since real clouds

are neither circular nor square, neither method will be

exact, but we might expect, from the outcome of the

previous section, that both will do a good job of ap-

proximating n. The green curve in Fig. 5b plots nAbel,

which is obtained by applying Eq. (14) to P. This is

an excellent approximation to the gray curve. The

red curve in Fig. 5b plots nsimple, which is obtained by

applying Eq. (8) to P. This is still a good approximation

to the gray curve, although it has a larger bias toward

small clouds.

Although plotting n(D) on a log–log plot is standard

practice, it is not the best way to convey an intuitive

feeling for the cloud size distribution. An alternative

is to plot the cloud fractional area distribution s(D)

on linear axes. Figure 6a plots s as measured directly

from the 2D analysis, ssimple as obtained from Eq. (9)

applied to the 1D P(L), and sAbel as obtained from

Eq. (15) applied to the 1D P(L), all on linear axes.

Again, we see that the simple method is biased toward

smaller clouds sizes, but the bias is small. We can

quantify this bias by calculating the area-weighted

mean cloud size hDi, given by Eq. (23). The gray, red,

and green circles on the abscissa of Fig. 6a denote

the area-weighted mean cloud sizes hDi, hDisimple,
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and hDiAbel, calculated from s, ssimple, and sAbel,

respectively. The true area-weighted mean cloud size

is 1450m, and the Abel and simple methods un-

derestimate this by 20% and 37%, respectively. Since

1/(1 2 0.37) 5 1.6, the true area-weighted mean cloud

size is bigger than the estimate from the simple

method by a factor of 1.6 in this case. Also, note that,

in this case of real clouds, the simple method gives an

FIG. 4. (a) A 40 000-km2 Landsat scene of maritime cumuli, in negative, that is then (b) rotated and cropped, (c) zoomed in on a 100-km2

patch, (d) filtered to make the ocean white, (e) filtered to make the clouds black, and (f) color coded to illustrate individual clouds.

FIG. 5. (a) The same 10 km3 10 km sample of the Landsat scene shown in Figs. 4c–f. (b) Plots of n(D) (gray) and

P(L) (blue) calculated directly from the Landsat image, as well as nsimple calculated from Eq. (8) applied to P(L)

(red) and nAbel calculated from Eq. (14) applied to P(L) (green).
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estimate for hDi that is 21% smaller than the estimate

from the Abel method. This is very similar to the 15%

difference found in section 3b for circular clouds.

5. Evaluation against 69 Landsat scenes

For the single Landsat scene analyzed in the previous

section, we found that hDi=hDisimple equals 1.6. But how

constant is this ratio? After all, we can easily imagine

some cloud shapes that would lead to large deviations

from this value. For clouds with an intensely non-

convex shape—for example, the shape of a comb—the

sampled chord lengths would be biased low and the

required correction factor would be much greater

than 1.6. On the other hand, clouds that are elongated

in the sampling direction with a large aspect ratio—for

example, a very skinny rectangle or a highly eccentric

ellipse—the sampled chord lengths would be biased

high and the required correction factor would be much

less than 1.6. (See the appendix for a mathematical

treatment of rectangles and ellipses.) Fortunately, most

convective clouds do not possess such exaggerated

convexity or elongation. We might guess, therefore,

that most naturally occurring convective clouds

exhibit a similar hDi=hDisimple ratio.

To test this, we search for suitable Landsat-8 scenes

within Worldwide Reference System (WRS) rows 5–10

and WRS paths 38–43, which encompass the patch of

the western North Atlantic shown in Fig. 7. Of the

229 ‘‘L8 OLI/TIRS C1 Level-1’’ scenes (L8: Landsat-8;

OLI: Operational Land Imager; TIRS: Thermal Infrared

Sensor; C1: Collection 1), 160 are deemed unsatisfac-

tory owing to one or more of the following conditions:

having elongated and wispy midtropospheric or upper-

tropospheric clouds, being dominated by clouds com-

parable in size to the width of the scene, having an

island in the scene that would interfere with the

cloud-identification algorithm, or having solar reflection

off the ocean surface that would interfere with the

cloud-identification algorithm. The remaining 69 scenes

are listed in Table 1. Each image is processed with

FIG. 6. (a) For the Landsat scene, plots of s, ssimple, and sAbel and the values of hDi, hDisimple, and hDiAbel marked on

the abscissa. (b) As in (a), but for the RACORO data.

FIG. 7. The patch of the western North Atlantic encompassing

WRS rows 5–10 andWRS paths 38–43. This is the region where the

69 Landsat-8 scenes were collected.
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the methods described in the previous section, which

generate a binary cloud–ocean image similar to that

depicted in Fig. 4e. Figure 8 shows a low-resolution

thumbnail of these binary images for each of the

69 Landsat scenes.

As in the previous section, we identify individual

clouds as connected regions of black in the binary

images. For each image, this allows us to calculate the

2D area of each cloud. From those areas, we calculate

the true hDi for each of the 69 scenes. Sampling each

binary image with linear transects as in the previous

section, we also generate a set of 1D cloud-chord

lengths. From those lengths, we calculate hDisimple

from Eq. (11) for each of the 69 scenes. Figure 9 plots

the 69 actual hDi against the corresponding khDisimple

using a single best-fit value of k.

The agreement in Fig. 9 is striking. Despite a 40-fold

range in sizes (from 500m to 20km), khDisimple with a

single value of k does an excellent job of estimating

the true area-weighted mean cloud size. By calculating

the mean and standard deviation of the 69 values

of hDi=hDisimple, we find that k 5 1.7 6 0.3.

6. Application to RACORO

The real power of thesemethods lies in their ability to

calculate the size distribution n in cases where n is not

directly observable. Although there is no benchmark

size distribution to compare against in these cases, we

can perform a sanity test by checking that nsimple and

nAbel give similar results.

For demonstration, we use here cloud data col-

lected by an aircraft during the Routine ARM Aerial

Facility (AAF) Clouds with Low Optical Water

Depths (CLOWD) Optical Radiative Observations

TABLE 1. The 69 Landsat scenes used in section 5. The analysis

used images from the combined OLI/TIRS product of Landsat-8

acquired at the listedWRS path and row on the listed year, month,

and day.

Path Row Year Month Day

005 038 2013 09 22

005 038 2015 07 10

005 038 2015 11 15

005 038 2016 02 03

005 039 2013 09 22

005 039 2013 12 11

005 039 2015 06 24

005 039 2015 08 27

005 039 2016 02 03

005 040 2016 02 03

005 041 2015 05 23

005 041 2015 07 26

005 041 2015 10 30

005 041 2015 12 17

005 041 2016 01 02

005 041 2016 02 03

006 039 2015 11 06

006 039 2016 01 09

006 039 2016 04 14

006 040 2015 07 01

006 040 2015 08 02

006 040 2015 10 05

006 040 2015 11 06

006 040 2016 04 14

006 041 2015 08 02

006 041 2015 11 06

006 041 2015 11 22

006 041 2016 04 14

007 038 2013 08 19

007 038 2013 12 09

007 038 2015 09 10

007 039 2013 08 19

007 039 2013 10 22

007 039 2015 07 08

007 039 2015 10 28

007 039 2015 11 13

007 039 2015 12 31

007 040 2015 07 08

007 040 2015 10 28

007 040 2015 11 13

007 040 2015 12 31

007 041 2015 10 12

007 041 2015 10 28

007 041 2015 11 13

007 041 2015 12 31

008 038 2015 05 12

008 038 2015 06 29

008 038 2015 07 31

008 039 2015 07 31

008 039 2016 02 08

008 039 2016 04 12

008 040 2015 07 31

008 040 2015 08 16

008 040 2015 09 17

008 040 2015 12 22

TABLE 1. (Continued)

Path Row Year Month Day

008 040 2016 02 08

008 040 2016 03 11

008 040 2016 04 12

008 041 2015 07 31

008 041 2015 08 16

008 041 2015 09 17

008 041 2015 11 04

008 041 2016 03 11

010 043 2013 07 23

010 043 2013 08 24

010 043 2013 09 09

010 043 2013 09 25

010 043 2013 11 12

010 043 2013 12 30
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(RACORO) campaign (Vogelmann et al. 2012),

which took place over Oklahoma from 22 January to

30 June 2009. For our purposes, we focus on three

consecutive days (22, 23, and 24 May) that had similar

shallow cumuli. During those three days, the aircraft

flew a total of 937km of straight legs within the cumulus

layers. The mixing ratio of condensate was measured at

10Hz, which, at an airspeed of 60m s21, gives a sampling

FIG. 8. Low-resolution (40 000 pixels) thumbnails of the 69 Landsat scenes processed into binary images, with clouds shown in black.

Note that the analysis uses the full-resolution images, each of which has about 40 000 000 pixels.
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distance of 6m. The presence or absence of cloud was

defined by a mixing ratio threshold of 1025. The esti-

mate of the cloud fraction s0, as obtained from the

fraction of distance the aircraft spent in cloud, is 0.078.

Note that this is the mean cloud fraction for a single

altitude within the cloud layer; the vertically projected

cloud fraction, as obtained from a nadir-pointing sat-

ellite or a zenith-pointing camera, would be larger.

Figure 10 shows a photograph of the cumulus layer

taken from the aircraft on 24 May during a flight leg

that was above the cloud layer (i.e., a flight leg not used

in the calculation of P).

By binning the observed cloud-chord lengths and

normalizing as before, we obtain the P(L) shown as

the blue curve in Fig. 11b. Using Eqs. (8) and (14) on

this observed P generates nsimple and nAbel, plotted in

Fig. 11b in red and green, respectively. These two es-

timates for n agree fairly well, with the same tendency

for the simple method to be biased toward smaller

cloud sizes. To put this into a more intuitive form,

Fig. 6b plots ssimple and sAbel with the area-weighted

mean sizes denoted by the circles on the abscissa. In

this case, hDisimple 5 284m, which is 23% smaller than

hDiAbel. Note that this is similar to the 15% and 21%

differences found in sections 3b and 4, respectively.

Using Eq. (11) with k5 1.76 0.3, we can estimate that

the true area-weighted mean size of the clouds at

the altitudes sampled by the RACORO aircraft was

480 6 90m. To illustrate the estimated distribution

of cloud sizes sampled by these RACORO flights,

Fig. 11a plots a sample field of circular clouds using

nAbel with, as before, a lower cutoff size for plotting

purposes of 50m.

7. Summary

Given a set of cloud-chord lengths Li observed from

an unbiased straight-line sampling strategy, the cloud

cover is given by Eq. (5) and the area-weighted

mean cloud size is given by Eq. (11). To calculate the

distribution of cloud sizes n(D), one must first bin the

observed chord lengths and normalize the counts by

the bin widths and total sampling distance to generate

P(L). One then has a choice to estimate n(D) using

either the simple method in Eq. (8) or theAbel method

in Eq. (14); the former is exact in the case of sampling-

aligned square clouds, and the latter is exact in the

case of circular clouds.

As its name would suggest, the simple method

is simple to use. It is also guaranteed to give non-

negative n(D) and it will work on small sets of ob-

served Li. The Abel method is more complicated

to use since it requires differentiating P(L) and

integrating a divergent function, and it can generate

negative n(D). It is, therefore, not suitable for use

on sparse data. For rich datasets, however, the

Abel method will tend to give more accurate results,

undoubtedly because real cloud shapes are closer

to being circles than sampling-aligned squares. Even

if the more accurate Abel method is used, it is rec-

ommended that it be compared to the simple method

to check for errors in the numerics; if everything

is working properly, the area-weighted mean cloud

FIG. 9. Scatterplot of the actual area-weighted mean D for each

of the 69 Landsat scenes vs the simple estimate from Eq. (11) using

k 5 1.7. The solid curve marks the one-to-one line.

FIG. 10. The clouds as seen on 24 May from the RACORO aircraft

during a flight above the cloud layer.
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sizes predicted by the two methods should differ

by only about 20%.
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APPENDIX

Mathematical Treatment of Rectangles and Ellipses

a. Simple method applied to rectangles

Consider a population of sampling-aligned rectangles,

all of which have an aspect ratio r2, whereby their widthw

(perpendicular to the sampling direction) is r2 times their

length l (parallel to the sampling direction); that

is, w5 r2l. For these clouds, the effective size, defined

as the square root of the area, is D5
ffiffiffiffiffi
wl

p
5 rl. Note

that w5 rD and l5D/r.

For these rectangular clouds, Eq. (6) generalizes to

p(LjD)5 d(L2D/r)5 rd(rL2D) .

Equation (1) becomes

P(L)5

ð‘
0

dDn(D) rDp(LjD) .

Here, the extra factor of r represents the fact that, com-

pared to a square of the sameD, a rectangle of aspect ratio

r2 is a factor of rwider and, therefore, r timesmore likely to

be sampled. Combining these two equations, we get

P(L)5 r3n(rL)L .

Therefore, by Eq. (8),

n
simple

(D)5
P(D)

D
5 r3n(rD) .

Clearly, nsimple(D) does not equal n(D) for r 6¼ 1. The

estimated area-weighted mean cloud size will be

hDi
simple

5

ð‘
0

dDn
simple

(D)D3

ð‘
0

dDn
simple

(D)D2

(A1)

5

ð‘
0

dDn(rD)D3

ð‘
0

dDn(rD)D2

(A2)

5
1

r

ð‘
0

dDn(D)D3

ð‘
0

dDn(D)D2

(A3)

5
1

r
hDi , (A4)

where the 1/r is generated in the second-to-last line by

replacing the dummy integration variable D with D/r.

FIG. 11. (a) A sample field of circular clouds generated from the nAbel calculated from Eq. (14) applied to the

aircraft-measured P(L). (b) Plots of P(L) (blue) calculated directly from the RACORO aircraft data, as well as

nsimple calculated from Eq. (8) applied to P(L) (red), and nAbel calculated from Eq. (14) applied to P(L) (green).
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b. Abel method applied to ellipses

Consider a population of sampling-aligned ellipses,

all of which have an aspect ratio r2, whereby their

width w (perpendicular to the sampling direction) is

r2 times their length l (parallel to the sampling

direction); that is, w5 r2l. Letting y measure distance

parallel to the sampling direction, such an ellipse is

described by

1

r2
x2 1 r2y2 5

D2

4
.

Here, the effective size D is defined as D5 2
ffiffiffiffiffiffiffiffiffi
A/p

p
,

where A is the area of the ellipse. Note that w5 rD

and l5D/r.

For these elliptical clouds, Eq. (12) generalizes to

p(LjD)5
r2L

D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 2 r2L2

p H (L)H (D=r2L) .

Equation (1) becomes

P(L)5

ð‘
0

dDn(D) rDp(LjD) .

Here, the extra factor of r represents the fact that,

compared to a circle of the sameD, an ellipse of aspect

ratio r2 is a factor of r wider and, therefore, r times

more likely to be sampled. Combining these two

equations, we get

P(L)5 r3LH (L)

ð‘
rL

dD
n(D)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2 2 r2L2
p (A5)

5LH (L)

ð‘
L

dD
r3n(rD)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 2L2

p . (A6)

Comparing to Eq. (13), we see that the inverse Abel

transform will generate

n
Abel

(D)5 r3n(rD) .

Clearly, nAbel(D) does not equal n(D) for r 6¼ 1. In fact,

nAbel is related to the actual n for ellipses in the same

way that nsimple is related to the actual n for squares.

Proceeding as before, we get

hDi
Abel

5
1

r
hDi .
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