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ABSTRACT

A standard convention in moist thermodynamics, adopted by D. M. Romps and others, is to set the specific

energy and entropy of dry air and liquid water to zero at the triple-point temperature and pressure. P. Marquet

claims that this convention leads to physically incorrect results. To support this claim, Marquet presents nu-

merical calculations of a lifted parcel. It is shown here that the claim is false and that the numerical calculations

of Marquet are in error. In the context of a simple two-phase thermodynamic system, an analysis is presented

here of the freedoms one has to choose additive constants in the definitions of energy and entropy. Many other

misconceptions are corrected as well.

1. Introduction

It is difficult to know where to start when replying to a

comment like that of Marquet (2016, hereafter M16),

which is best summarized as a collection of general con-

fusion, misconceptions, and numerical errors. Certainly,

nothing in M16 is at all relevant to the claim by Romps

(2015, hereafter, R15) that moist static energy minus

convective available potential energy (MSE2 CAPE) is

the conserved thermodynamic variable for an adiabati-

cally lifted parcel. For the sake of the reader, however, I

will begin by summarizing the results from R15 in this

section. I will then address the three components of M16

listed above—confusion, misconceptions, and errors—in

the subsequent sections.

R15 showed that the conserved thermodynamic variable

for a parcel adiabatically lifted through an atmosphere

is MSE2 CAPE and not, in general, MSE, entropy, or

equivalent potential temperature. In MSE 2 CAPE,

CAPE is the integral over height of parcel buoyancy

b from the parcel’s current height z to some fixed ref-

erence height ztop, such as its level of neutral buoyancy

or the top of the troposphere,

CAPE5

ðztop
z

dz0b(z0) . (1)

Differentiating MSE 2 CAPE with respect to height

and setting it equal to zero (befitting a conserved vari-

able), we get

d

dz
(MSE)52b . (2)

Therefore, conservation of MSE 2 CAPE tells us that

the MSE of an adiabatically lifted parcel decreases with

height at a rate equal to its buoyancy.

This is not an entirely new idea, and it should not be a

controversial one. Riehl and Malkus (1958) wrote down

conservation of MSE 2 CAPE in their Eq. (10), although

they made approximations to the moist thermodynamics

and they believed (erroneously) that MSE 2 CAPE is

approximately conserved only for small buoyancies. R15

showed thatMSE2CAPE is exactly conserved evenwhen

accounting for the full details of moist thermodynamics

(e.g., the temperature dependence of latent enthalpy and

the dependence of heat capacity on water mixing ratios)

and that it is exactly conserved even for large buoyancies.

2. General confusion

It is curious that Marquet spends very little time dis-

cussing MSE 2 CAPE in any of the versions of his
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comment, even though that is the topic of the paper on

which M16 is ostensibly commenting. In the most recent

version of his comment, which is the version published in

this journal, Marquet claims that I have erred on the

sign: he thinks the minus in MSE 2 CAPE should be a

plus. As defined in Eq. (1) here or in Eq. (4) of R15, the

convective available potential energy (CAPE) of a

parcel at height z is the integral over height of that

parcel’s buoyancy as it is lifted from its current height z

to some reference height ztop, which may be chosen as

the parcel’s level of neutral buoyancy for consistency

with most other definitions of CAPE. (A typo in the first

sentence of the summary section of R15—the ‘‘to’’

should be a ‘‘from’’—may have contributed to the con-

fusion here.)M16 defines the CAPE of a parcel at height

z as the integral of its buoyancy from its level of free

convection zLFC up to its current height z; this, however,

is the parcel’s convective expended potential energy

(CEPE), not its CAPE. We may describe the thermo-

dynamic evolution of an adiabatically lifted parcel using

either conservation of MSE2 CAPE or MSE1 CEPE;

the sum of MSE and CAPE is not conserved.

In section 3 of M16, Marquet wonders aloud how the

pressure p(x) at the location x of a parcel can equal the

environmental pressure pe(z) while the parcel simul-

taneously experiences drag forces through pressure

perturbations p0(x)5 p(x)2pe(z). The answer to this,

which is given in R15, is that drag forces are felt

through pressure gradients, so it is perfectly consistent

for a parcel’s pressure to be equal to that of the envi-

ronment [p(x)5 pe(z)] while also feeling drag forces

[›p(x)/›z 6¼ ›pe(z)/›z]. Indeed, this behavior is ob-

served in large-eddy simulations [see Fig. 4 of Romps

and Charn (2015)].

These points of confusion are all that M16 has to offer

about MSE2 CAPE. The rest of his comment harps on

the third law of entropy, which is a common theme in his

publications about entropy. Indeed, both the adiabatic

and pseudoadiabatic parcel calculations presented by

M16 are performed with zero parcel buoyancy, which

is a poor choice for testing the conservation of MSE 2
CAPE since CAPE is identically zero. For adiabatic

ascent, zero buoyancy implies that MSE should be ex-

actly conserved, although Marquet seems unbothered

by the fact that his calculation of adiabatic ascent vio-

lates this conservation in a rather spectacular way. This

will be discussed further in section 4.

3. Misconceptions

In section 4 of M16, the discussion begins by sounding

the alarm on the definition of specific internal energy Ei

that is used by R15 for moist air:

E
i
5 c

ym
(T2T

trip
)1q

y
E

0y
2 q

s
E

0s
. (3)

Here, cym is the heat capacity at constant volume of

moist air, defined as

c
ym

5 q
a
c
ya
1 q

y
c
yy
1 q

l
c
yl
1q

s
c
ys
,

where q with subscripts denote the mass fractions of dry

air (subscript a), water vapor (subscript y), liquid water

(subscript l), and solid water (subscript s) and cy with

subscripts are the constant-volume heat capacities of

those constituents. M16 objects to the ‘‘assumption’’ that

E0y is the difference in specific internal energy between

water vapor and liquid at the triple-point temperature

and that E0s is the difference in specific internal energy

between liquid and solid at the triple-point temperature.

But, these are not assumptions: the meanings of E0y and

E0s are immediately obvious fromEq. (3). For pure water

vapor at the triple point (T5Ttrip, qy 5 1, qs 5 0),

Ei 5E0y. For pure liquid water at the triple point

(T5Ttrip, qy 5 0, qs 5 0), Ei 5 0. For pure solid water at

the triple point (T5Ttrip, qy 5 0, qs 5 1), Ei 52E0y.

Clearly, then, E0y is the difference in specific internal

energy between vapor and liquid at the triple point, and

similarly for E0s.

The main objection raised by M16, however, is that

R15 and others (Emanuel 1994; Romps 2008; Romps

and Kuang 2010; Pauluis et al. 2010) have made a grave

mistake by defining the energy and entropy for moist air

in such a way that the energy and entropy of liquid water

and dry air are zero at a convenient reference temper-

ature and pressure. M16 claims that the equations of

moist thermodynamics can only be solved correctly us-

ing the additive offsets for the energy and entropy of dry

air and liquid water that he prefers. This is a common

refrain in Marquet’s publications (e.g., Marquet 2015)

and it is demonstrably false. To claim that these overall

energy and entropy offsets have any physical conse-

quence is like claiming that one cannot calculate the

trajectory of a falling ball using geopotential relative to

the floor (gz2 gzfloor) instead of the ‘‘correct’’ choice of

geopotential relative to sea level (gz2 gzsea). What do

matter are the relative values of internal energy and

entropy for states of matter between which mass physi-

cally transitions, either through phase changes, chemical

reactions, or nuclear reactions. Unless the atmosphere

begins converting water to dry air or vice versa through

some nuclear alchemy, the offsets we use for the internal

energy and entropy of dry air and liquid water are

completely arbitrary.

Furthermore, M16 claims that these overall offsets

must be defined in the way he prefers or else the re-

sulting definitions of energy, enthalpy, and entropy will
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not give the right answer when considering open

systems—for example, when there is a sink of water in a

parcel due to precipitation fallout. This is also false.

Note that M16 talks exclusively about definitions of

energy, enthalpy, and entropy and not at all about the

equations that govern them. When we go to write down

the governing equations, we see that it is trivial to define

the correct thermodynamic equations regardless of the

choice of offsets. A pedagogical example is given in the

appendix for a two-phase liquid system.

A secondary point made by M16 is that R15 added

another adiabatically conserved variable, qaRaTtrip, to

the definition of MSE to put it into a particularly at-

tractive form. This was certainly not necessary and could

be omitted to retain the standard relationship between

MSE and enthalpy h—namely, MSE5 h1 gz. Not a

single figure or conclusion in R15 would be altered in

any way by using this more standard definition of MSE:

MSE2CAPE is the conserved thermodynamic variable

for an adiabatically lifted parcel no matter what adia-

batically conserved variables are added (or not added)

to the definition of MSE.

4. Numerical errors

M16 objects to the equivalent potential temperature ue
defined in Romps and Kuang (2010) and used by R15 on

the grounds that it is calculated by having omitted the

‘‘true’’ entropy offsets for liquid and dry air. A superior

alternative, claims M16 [see, also, the numerous publi-

cations by Marquet on this topic dating back to Marquet

(2011)], is an equivalent potential temperature denoted

by us. In the original version of his comment (see http://

arxiv.org/pdf/1509.09096v2), Marquet tried to make this

point by calculating the thermodynamic properties of a

parcel lifted adiabatically with zero buoyancy. Marquet

used those numerical results to claim thatMSE and us are

conserved and that ue is not. To the contrary, however, his

calculations did not conserve any of these variables. They

should be conserved to within numerical round-off error,

but Marquet got fractional errors on the order of 1026–

1023 for MSE, us, and ue. This points to serious errors in

the way Marquet is calculating the adiabatic ascent.

When calculated properly, all of these are conserved to

within round-off error: fractional errors on the order of

10215 for entropy s, Marquet’s us, and Romps’s ue, and a

fractional error on the order of 10211 for MSE (which

accumulates round-off error over 104 1-Pa integration

steps). The top row of Fig. 1 illustrates the constancy of

these profiles to within round-off error for exactly the

same process purportedly calculated by Marquet. These

profiles are calculated by assuming conservation of en-

tropy and, for a given pressure, using a root solver to

calculate temperature (outside of the triple-point tem-

perature) or ql/(ql 1 qs) (at the triple-point temperature).

This procedure is repeated for each 1-Pa increment be-

tween 105 and 104Pa. Heights of these pressure levels are

integrated upward using hydrostatic balance; these in-

tegrated heights are used in the expression for MSE. The

profiles displayed in Fig. 1 are subsampled from these

solutions every 10 mb (1000Pa). For context, the bottom

row shows the profiles of parcel T, qy, ql, and qs. The

takeaway message from Fig. 1 is that, for a parcel lifted

adiabatically, reversibly, and with zero buoyancy, all of s,

us, ue, and MSE are exactly conserved, contrary to the

claims byMarquet in the original version of his comment.

Upon receiving a first draft of my reply, Marquet

heavily edited his comment to remove his claim that only

us is conserved for adiabatic ascent. But, M16 has added a

new and equally puzzling result: the supposedly isentropic

parcel ascent shown in his new Fig. 2. Where Marquet

describes this figure in his section 7, he simultaneously

states that he is calculating isentropic ascent of a parcel

and that he is freezing the parcel’s liquid water immedi-

ately upon reaching the triple-point temperature. These

are contradictory statements. A parcel whose pressure is

lowered isentropically goes through an isothermal (non-

isobaric) transition from liquid condensates to solid con-

densates at the triple point. Indeed, it is called the ‘‘triple

point’’ because all three phases coexist. Incidentally, M16

mischaracterizes Fig. 8 of Romps and Kuang (2010) as

also freezing the parcels’ liquid condensates immediately

upon reaching the triple-point temperature. This is not

true; that paper clearly states that it calculates equilibrium

mixed-phase conditions for parcels at the triple-point

temperature.

Even more disconcerting is that the MSE of the adia-

batically lifted parcel changes by 5000 Jkg21 at the

freezing temperature in Fig. 2 of M16. Since Marquet is

lifting a parcel with zero buoyancy, MSE should be ex-

actly conserved. (Note that, when Marquet and I refer to

MSE, we are both including the ice term; the resulting

expression is what some people call the ‘‘frozen moist

static energy,’’ and it should be conserved in the presence

of fusion.) The fact thatM16 is finding a nonconservation

of MSE by such a large amount—equivalent to a 5-K

anomaly in parcel temperature—means that his calcula-

tions are still suffering from grave numerical errors.

Marquet tries to justify the jumps in entropy andMSE

that he finds at the freezing point for supposedly isen-

tropic ascent by pointing to the jumps in buoyancy seen

in Fig. 8 of Romps and Kuang (2010) and Fig. 2 of R15.

Of course, this is a meaningless comparison of apples

and oranges: a parcel can have a jump in buoyancy with

no change in entropy. In Fig. 8 of Romps and Kuang

(2010), the dark-blue curve is for an isentropic parcel,
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and its jump in buoyancy is not discontinuous but spread

out over an isothermal triple-point layer. In the right

panel of Fig. 2 of R15, the ‘‘hooks’’ in parcel buoyancy

are not caused by discontinuous jumps in entropy as

Marquet claims, but instead by the fact that the lifted

parcels reach the temperatures bracketing the mixed-

phase region at slightly different altitudes than the en-

vironment; this is as expected, since the parcels are

warmer at every height than the environment.

In his section 8, Marquet turns his attention to the

calculation of parcels lifted pseudoadiabatically. He be-

gins by arguing that adiabatic ascent is not common in the

real world. I agree. And neither is the pseudoadiabatic

ascent that Marquet studies. In reality, cloud parcels lose

condensed water by fallout and they dilute their MSE by

entrainment. But, any ascent can be calculated numeri-

cally by subjecting the parcel to a repeated sequence of

adiabatic ascent, fallout, and entrainment over suffi-

ciently small height increments. The argument made by

R15 is that the adiabatic-ascent part of this calculation

must be performed conserving MSE 2 CAPE. The in-

clusion of fallout and entrainment does not alter the

central message of R15: for any parcel lifted through the

atmosphere (that suffers from any combination of drag,

fallout, entrainment, etc.), there is a sink of MSE pro-

portional to buoyancy times vertical velocity.

M16 attempts to show that us is ‘‘valid’’ for pseudoa-

diabatic ascent while ue is not. What M16 never defines,

however, is what is meant by valid. Neither ue nor us are

conserved for pseudoadiabatic ascent: they are the expo-

nentials of entropy, and entropy is only conserved for

adiabatic transformations. In fact, in Fig. 4 of M16, the

changes in us are an order of magnitude larger than the

changes in ue. On the other hand, the thermodynamic

equation for amoist atmosphere can be written in terms of

either ue and us; in this sense, they are both valid.

5. Conclusions

The concluding section of M16 is devoted to some

lengthy and irrelevant discussion about the entropy of

perfect crystals at absolute zero, Debye’s law, and a

Nobel Prize presentation speech. I will, therefore, not

spare any space to comment on it. Instead, I will sum-

marize here the two most important lessons that have

emerged from this discussion.

FIG. 1. Thermodynamic profiles for a saturated parcel initially at T5 300.5K and p5 1 bar that is then lifted adiabatically, reversibly,

and with zero buoyancy. (top) Fractional deviations of entropy s, Marquet us, Romps ue, and MSE from their mean values; note that all

four of these quantities are conserved to within numerical round-off error. (bottom) Temperature T, vapor mass fraction qy , liquid mass

fraction ql , and solid mass fraction qs.
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One lesson is that there are many ways to define the

energy and entropy of a thermodynamic system. When

choosing a set of definitions, it is important to give

physical values to the differences between the energies

and entropies of states between which matter transi-

tions (e.g., between vapor and liquid and between liquid

and solid). But, there is unlimited freedom to choose an

overall additive energy constant for any set of states

within which matter is conserved (e.g., an overall ad-

ditive constant for the energies of vapor, liquid, and

solid or an overall additive constant for the energy of

dry air) and similarly for an overall additive entropy

constant. This allows us to adopt some convenient

conventions, such as setting the energy and entropy of

both dry air and liquid water to zero at the triple-point

temperature and pressure.

Another lesson is that there are many ways to define

equivalent potential temperature. Loosely speaking,

equivalent potential temperature is the exponential

of entropy. Since there are several choices of factors

when taking this exponential, and because the ex-

pression can be adorned with various instances of the

dry-air mass fraction qa (also a conserved variable for

adiabatic transformations), different definitions of

equivalent potential temperature may look very dif-

ferent even though they are conserved for the same

process. Two such examples are ue of R15 and us
of M16.
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APPENDIX

Example: Two-Phase Liquid

Mathematically, the primary claim of M16 is that

very precise values must be chosen for the specific

energy of dry air at the triple point eia0, the specific

energy of liquid water at the triple point eil0, the spe-

cific entropy of dry air at the triple point sar, and the

specific entropy of liquid water at the triple point slr. It

is straightforward to show that this is false and that, in

fact, they can be set to any value, including the con-

venient choice of zero. Rather than go through that

exercise for four states of matter (dry air, water vapor,

liquid water, and solid water), let us consider a much

simpler system: two incompressible liquids with the

same density r. The equations for this system are

simpler and, yet, contain all of the physics that is rel-

evant for understanding energy and entropy offsets.

Let us denote these two types of liquid by subscripts 1

and 2, and let their specific internal energies be

e
1
5 c

1
(T2T

r
)1 e

r1
and (A1)

e
2
5 c

2
(T2T

r
)1 e

r2
, (A2)

where T is the temperature, ci is the heat capacity at

constant volume for phase i, Tr is an arbitrary reference

temperature, and eri is the internal energy of phase i at

T5Tr. The specific entropy of each phase can be found

by integrating Tdsi 5 dei, which gives

s
1
5 c

1
log(T/T

r
)1 s

r1
and (A3)

s
2
5 c

2
log(T/T

r
)1 s

r2
, (A4)

where sr1 and sr2 are integration constants. The total

specific internal energy e, total specific entropy s, and the

heat capacity of the mixture c are

e5 q
1
e
1
1 q

2
e
2
, (A5)

s5 q
1
s
1
1 q

2
s
2
, and (A6)

c5 q
1
c
1
1 q

2
c
2
, (A7)

where q1 and q2 are the mass fractions of the two liquids

(with q1 1 q2 5 1).

The equations for this system are explored in the

subsections below. We begin in the first subsection

by imagining that mass is never converted between

these two types of liquid. In this case, all of the energy

and entropy offsets can be chosen arbitrarily and

independently of each other; this is analogous to dry air

and liquid water, whose offsets can likewise be chosen

arbitrarily and independently. In the second subsection,

we imagine that mass is able to transition between these

two phases of liquid. In this case, there is a phase

boundary at a fixed temperature and the difference

between the two energy offsets (and the difference be-

tween the two entropy offsets) must be chosen appro-

priately to give the right physics at that phase boundary;

this is analogous to water vapor and liquid water, for

which the relative energy offset must be chosen appro-

priately while leaving the overall offset for both phases

(i.e., the liquid-water triple-point energy) free to be

chosen arbitrarily, and similarly for the entropy offset.

Finally, the third subsection adds sources of these two

liquid phases to the equations to produce an open sys-

tem. In this case, it is trivial to define the appropriate

equations no matter what overall offsets have been

chosen for energy and entropy.
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a. No conversion

The governing equations for mass and energy can be

written as

›

›t
(re)1= � (rue)5Q , (A8)

›

›t
(q

1
r)1= � (q

1
ru)5 0, and (A9)

›

›t
(q

2
r)1= � (q

2
ru)5 0, (A10)

where Q is the heating rate (Jm23 s21). From these, we

can derive

rc
dT

dt
5Q , (A11)

r
dq

1

dt
5 0, and (A12)

r
dq

2

dt
5 0. (A13)

The entropy equation follows immediately from Eqs.

(A11)–(A13) applied to the definition of entropy

given by Eqs. (A3), (A4), and (A6). This is an im-

portant point that was emphasized by Romps (2008):

the entropy equation contains no information that is

not already present in the governing equations for

mass and energy. In practice, we find the equation for

entropy by taking d/dt of s and rewriting it in terms of

energy sources and mass sources using Eqs. (A11)–

(A13). This produces

r
ds

dt
5

Q

T
. (A14)

For adiabatic processes (Q5 0), it is evident from Eq.

(A14) that s is conserved for all adiabatic trans-

formations (Q5 0), making it a suitable definition of

entropy for any values of sr1 and sr2. Note, also, that the

enthalpy constants er1 and er2 are also completely arbi-

trary since they do not appear in the governing Eqs.

(A11)–(A13). The values of er1, er2, sr1, and sr2 have no

physical consequence when there is no conversion of

mass between the two types of liquid. This is analogous

to dry air and liquid water, between which there is no

conversion of mass: their energy and entropy offsets can

be chosen arbitrarily and independently and so can be

set to zero at the triple point.

b. Conversion

Let us now allow mass to convert between the two

states of matter. Defining C2/1 as the rate of conversion

from phase 2 to phase 1 (kgm23 s21), the governing

equations become

›

›t
(re)1= � (rue)5Q , (A15)

›

›t
(q

1
r)1= � (q

1
ru)5C

2/1
, and (A16)

›

›t
(q

2
r)1= � (q

2
ru)52C

2/1
. (A17)

From these, we can derive

rc
dT

dt
5Q1 (e

2
2 e

1
)C

2/1
, (A18)

r
dq

1

dt
5C

2/1
, and (A19)

r
dq

2

dt
52C

2/1
. (A20)

As before, the entropy equation is obtained directly

from Eqs. (A18)–(A20), yielding

r
ds

dt
5

Q

T
1

C
2/1

T
[(e

2
2 e

1
)2 (s

2
2 s

1
)T] . (A21)

The term in square brackets is the difference in Gibb’s

free energy between the two phases. In order for en-

tropy to be conserved for adiabatic and reversible

transformations, this difference in Gibb’s free energy

must be zero at the phase boundary, which lies at

a fixed temperature for these incompressible, same-

density liquid phases. For simplicity, we can set the

reference temperature Tr to the temperature of this

FIG. A1. Phase diagram for two incompressible liquids of the

same density that are at thermodynamic equilibrium at tem-

perature Tr .
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phase boundary. The phase diagram for these two-

liquid-phase system is shown in Fig. A1.

The difference in Gibb’s free energies equals zero at

the phase boundary if

e
r1
2T

r
s
r1
5 e

r2
2T

r
s
r2
. (A22)

To get the correct heat release of conversion, we must

also require that er2 2 er1 equal the latent enthalpy of

conversion at the phase boundary Lr,

e
r2
2 e

r1
5L

r
. (A23)

Using Eqs. (A22) and (A23) to eliminate er2 and sr2 from

Eqs. (A1)–(A4), we can write the specific energies and

entropies as

e
1
5 c

1
(T2T

r
)1 e

r1
, (A24)
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2
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r
)1 s
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s
2
5 c

2
log(T/T

r
)1

L
r

T
r

1 s
r1
. (A27)

With these definitions, it is evident fromEq. (A21) that s

is conserved for all transformations that are adiabatic

(Q5 0) and reversible (C2/1 5 0 when T 6¼ Tr). Note

that the overall energy and entropy offsets er1 and sr1
remain completely arbitrary since they do not enter at

all into governing Eqs. (A18)–(A20). The values of these

constants have no physical consequence whatsoever.

This system is analogous to amixture of vapor and liquid

with phase changes; their relative energy and entropy

constants are constrained, but the overall offsets of en-

ergy and entropy are arbitrary and can be set to zero at

the triple point.

c. Sources

If there are mass sources S1 and S2 for liquid phases 1

and 2, respectively, then we must add sources of en-

thalpy and mass to the right-hand side of Eqs. (A15)–

(A17), which gives

›
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1
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›

›t
(q

1
r)1= � (q

1
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2
ru)52C

2/1
1 S

2
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The Lagrangian versions of these equations are
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2
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1
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From these governing equations, we can derive the en-

tropy equation, which is

r
ds

dt
5
Q

T
1

C
2/1

T
[(e

2
2 e

1
)2 (s

2
2 s

1
)T]

1 s
1
S
1
1 s

2
S
2
2 s(S

1
1 S

2
) . (A34)

With the definitions given by Eqs. (A24)–(A27), it is

evident from Eq. (A34) that s is conserved for all

transformations that are adiabatic (Q5 S1 5 S2 5 0) and

reversible (C2/1 5 0 when T 6¼ Tr) regardless of the

values chosen for er1 and sr1. The values chosen for the

overall energy offset er1 and entropy offset sr1 have no

physical consequence whatsoever since they do not

show up in governing Eqs. (A31)–(A33). This system is

analogous to a mixture of vapor and liquid with phase

changes and a mass source/sink of liquid due to pre-

cipitation fallout; their relative energy and entropy

constants are constrained, but, despite being an open

system, the overall offsets of energy and entropy are

arbitrary and can be set to zero at the triple point.
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