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ABSTRACT

The baroclinic-mode decomposition is a fixture of the tropical-dynamics literature because of its simplicity

and apparent usefulness in understanding a wide range of atmospheric phenomena. However, its derivation

relies on the assumption that the tropopause is a rigid lid that artificially restricts the vertical propagation of

wave energy. This causes tropospheric buoyancy anomalies of a single vertical mode to remain coherent for all

time in the absence of dissipation. Here, the authors derive the Green’s functions for these baroclinic modes

in a two-dimensional troposphere (or, equivalently, a three-dimensional troposphere with one translational

symmetry) that is overlain by a stratosphere. TheseGreen’s functions quantify the propagation and spreading

of gravity waves generated by a horizontally localized heating, and they can be used to reconstruct the

evolution of any tropospheric heating. For a first-baroclinic two-dimensional right-moving or left-moving

gravity wave with a characteristic width of 100 km, its initial horizontal shape becomes unrecognizable after

4 h, at which point its initial amplitude has also been reduced by a factor of 1/p. After this time, the gravity

wave assumes a universal shape that widens linearly in time. For gravity waves on a periodic domain the

length of Earth’s circumference, it takes only 10 days for the gravity waves to spread their buoyancy

throughout the entire domain.

1. Introduction

Much of the atmospheric tropical-dynamics literature

has relied on spectrally discretized and truncatedmodels

that reduce the primitive equations to a set of shallow-

water equations for the first one or two baroclinic modes

(e.g., Matsuno 1966; Gill 1980; Neelin and Held 1987;

Mapes 1993). This class of simple models is capable of

replicating important aspects of the tropical atmo-

spheric circulation. For example, some studies (e.g.,

Wheeler and Kiladis 1999; Hendon and Wheeler 2008)

have documented features in the tropical spectra of

outgoing longwave radiation that appear quite similar to

the linear equatorial waves predicted by Matsuno

(1966). Others (e.g., Gill 1980; Neelin and Held 1987)

have constructed simple models that capture many of

the observed features of steady tropical circulations

using only the first baroclinic mode.

The spectral discretization used by these simple

models is only formally justified if the tropopause be-

haves like a rigid lid, and the spectral truncation to the

first one or two modes is valid only if the heating has a

particularly simple structure. It has indeed been observed

that the first one or two baroclinic modes dominate

diabatic heating profiles in the tropical troposphere, at

least around mesoscale convective systems (Mapes and

Houze 1995). Past work often interprets first- and

second-baroclinic-mode heating as corresponding to

deep convective and stratiform clouds, respectively

(e.g., Mapes 2000; Haertel and Kiladis 2004). However,

the tropopause is far from being a rigid lid, and in a semi-

infinite atmosphere, any heat source confined to the

troposphere excites waves with a continuous spectrum

of vertical structures, even if the heating is dominated

by a single baroclinic mode (Pandya et al. 1993; Mapes

1998; Lindzen 2003).

A further objection to this spectral discretization and

truncation comes from considering the response to

transient heating in a model with a rigid lid. Bretherton

and Smolarkiewicz (1989) introduced the canonical de-

scription of gravity wave adjustment in a nonrotating

fluid, in which wave fronts of compensating subsidence

propagate away from the heat source at discrete gravity

wave speeds corresponding to each baroclinic mode.

This model has proved useful for understanding how

convective clouds may initiate convection in their localCorresponding author: Jacob P. Edman, jedman@berkeley.edu
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environments (Mapes 1993) and for parameterizing the

interaction of convection and large-scale circulations

(e.g., Raymond and Zeng 2000; Cohen and Craig 2004;

Edman and Romps 2014). However, this picture of

purely horizontal wave radiation is at best incomplete: it

predicts that wave fronts produced by a pulse of heating

will propagate forever unless there is some dissipation in

the system. To prevent this pathological behavior, sim-

ple models based on one or two baroclinic modes often

invoke strong damping in the form of Rayleigh friction

and Newtonian cooling, with time scales of about

1–10 days (e.g., Matsuno 1966; Chang 1977; Gill 1980;

Wu et al. 2000; Sobel et al. 2001; Sugiyama 2009; Chan

and Shepherd 2014). Some have found this need for

strong damping unsettling (e.g., Battisti et al. 1999), but

recent work has suggested that it could be produced by

convective momentum transport (Lin et al. 2008;

Romps 2014).

As other studies have pointed out (e.g., Pandya et al.

1993), the upward radiation of wave energy modifies the

rigid-lid picture, smoothing out sharp wave fronts that

would otherwise propagate forever in the absence of any

dissipative friction or radiation. This diffusion of sharp

wave fronts occurs because the vertical component of

the group velocity for hydrostatic gravity waves is pro-

portional to the horizontal wavenumber. Therefore, the

largest horizontal wavenumbers are the first to radiate

out of the troposphere (Gill 1982), rapidly smoothing

out any sharp features in the tropospheric gravity wave.

Eventually, all of the nonzero horizontal wavenumbers

radiate into the stratosphere, leaving the troposphere

with a nonpropagating, horizontally uniform buoyancy

anomaly.

Some studies have suggested that internal gravity

waves radiate out of the troposphere on time scales

relevant to dynamics. Mapes (1998) attempted to pa-

rameterize the smoothing of wave fronts emanating

from a mesoscale convective system using a Gaussian

kernel. And, Yano and Emanuel (1991) found that up-

ward radiation of wave energy suppresses the growth of

the wind-induced surface heat exchange (WISHE) in-

stability for all but the longest equatorial modes.

In another study, Chumakova et al. (2013, hereafter

CRT) found a set of exponentially decaying solutions to

the linearized two-dimensional Boussinesq equations

in a layer of fluid with constant buoyancy frequency N1

(i.e., the troposphere) overlain by a layer of fluid with a

buoyancy frequency N2 greater than N1 (i.e., the

stratosphere). We will refer to these exponentially de-

caying solutions as CRT modes. A single CRT mode of

buoyancy [from Eqs. (17) and (18) of CRT] can be

written as1
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8>>>><
>>>>:

b
0
sin(mz) exp

�
2i

N
1
jkj
m

t1 ikx

�
for z#H

b
0

N2
2

N2
1

sin(mH) exp

�
2i

N
1
jkj
m

t1 ikx2 i
N

2

N
1

m(z2H)

�
for z.H

, (1)

where

m5
np1 i tanh21(N

1
/N

2
)

H
(2)

is a complex vertical wavenumber, n is an integer, k is a

horizontal wavenumber, H is the height of the tropo-

pause, and b0 is a constant with dimensions of buoyancy.

This buoyancy distribution can be generated at time

t5 0 in an initially quiescent atmosphere by applying a

heating of Q5 bCRT
k,m (x, z, 0)d(t), where d is the Dirac

delta function. The resulting pattern of buoyancy

propagates horizontally with speed Re(N1/m) and de-

cays exponentially with an e-folding time of

21/Im(N1jkj/m).

In principle, the CRT modes can be used to construct

solutions to some initial-value problems, but there are a

host of problems with this approach: the CRTmodes do

not have the same vertical structure as rigid-lid normal

modes; the CRT modes are not orthogonal; the CRT

modes are divergent in the N2 5N1 limit; the buoyancy

in the initial state of each CRT mode is not confined to

the troposphere; and the energy density of each CRT

mode grows exponentially without bound as you move

upward in the stratosphere. The unboundedness is es-

sential to how the CRTmodes work: the CRTmodes are

constructed to decay exponentially in time, but to have

an upward-propagating pattern of gravity waves in the

stratosphere that decays exponentially with time, the

pattern must grow exponentially with height.

1 There are a couple of typos in Eq. (18) of CRT. The expressions

for rn and pn are missing factors of ir0 and ir0N
2
1 , respectively. In

Eq. (4), we have also extended the CRT modes into the strato-

sphere by enforcing continuity of (1/N2)›tb and (1/N2)›z›tb at

z5H, which guarantee continuity of u and w.
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Another way in which the CRT modes are unphysical

is that they fail to generate a steady state in response to a

steady tropospheric heating. In a two-dimensional (2D)

Boussinesq fluid at rest, the response to a steady heating

is steady and finite within an ever-expanding region

centered at the location of the heating. To see that the

CRT modes do not achieve this state, first consider the

heating

Q(x, z, t)5

8><
>:

B
0
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wherem is defined as in Eq. (2) with integer n. Here and

throughout, we will use a lowercase b to denote a

buoyancy (m s22), an uppercase B to denote a horizon-

tally integrated buoyancy (m2 s22), and Q to denote a

heating or, in other words, a tendency of buoyancy

(m s23). Since the Fourier transform of d(x) is 1/
ffiffiffiffiffiffi
2p

p
,

this buoyancy evolves as
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This solution has a left-moving pulse of buoyancy and a

right-moving pulse of buoyancy that both smear out with

time. As with the single-k solution in Eq. (1), this has an

energy density that grows exponentially with height in

the stratosphere. This behavior was baked in by the

heating in Eq. (3), which had to be chosen that way in

order to make use of the CRT modes. When integrated

horizontally and temporally, that heating grows expo-

nentially with height in the stratosphere.

From this solution, we can find the solution to a

heating that has the same spatial structure as Eq. (3) but

has a Heaviside unit step function of time H (t) instead

of a d(t) (i.e., the heating is switched on at t5 0 and held

on). The solution to this is
Ð t
0
dt0bCRT

m (x, z, t0)H (t), which

is proportional to log[12 (N1t/mx)2], which grows log-

arithmically without bound. Since this behavior occurs

for any m satisfying Eq. (2), the CRT modes do not

admit any steady-state solutions to a steady heating.

The left panel of Fig. 1 illustrates this pathology for an

n 5 1 heating (closely approximating a first-baroclinic

structure in the troposphere) of the form in Eq. (3) with

d(t) replaced withH (t). The values ofH,N1, andN2 are

chosen to be representative of the tropical atmosphere.

Based on Fig. 2, which shows the mean of 3-hourly

soundings from the Department of Energy’s Atmo-

spheric Radiation Measurement (ARM) site in Darwin,

Australia, from 18 January to 3 February 2006, these

values are set to H 5 17km, N1 5 0:01 s21 and

N2 5 0:025 s21 here and throughout the paper. For ease

of reference, these values are printed in Table 1. In the

left panel of Fig. 1, each colored line plots the time series

of midtropospheric buoyancy at a specific distance from

the origin. For example, the darkest blue curve is the

buoyancy at x 5 10 km, which will feel the leading edge

of the gravity wave pass over it at a normalized time of

Re(N1/m)t5 10 km. The darkest red curve is the buoy-

ancy at x 5 100km, which will feel the leading edge of

the gravity wave pass over it at a normalized time of

Re(N1/m)t5 100 km. If these solutions behaved as ex-

pected from rigid-lid thinking, then the buoyancy at

each of these locations would plateau at a value of

2Re(N1/m)/B0 shortly after the wave front has passed.

Instead, the buoyancy at all of these locations continues

to rise logarithmically. This undesirable behavior is a

consequence of the stratospheric heating that is baked

into the CRTmodes. As we will see in section 2d, steady

heating that is confined to the troposphere generates a

steady buoyancy field.

In this study, we take a different approach than CRT.

Rather than seek a set of vertical modes for an atmo-

sphere without a rigid lid at the tropopause, we solve the

initial-value problem directly. In section 2, we derive a
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Green’s function for a pulse of buoyancy in the tropo-

sphere with baroclinic vertical structure for the simplest

atmosphere without a rigid lid at the tropopause: the

two-dimensional, nonrotating Boussinesq equations

with two layers of constant but differing stratification. In

the subsequent sections, we explore how this simple

change to a more realistic upper boundary condition

results in buoyancy anomalies that quickly spread out as

they propagate, in stark contrast to the rigid-lid case.

2. The leaky-lid Green’s function

The Boussinesq equations describing hydrostatic lin-

ear perturbations to a two-dimensional, nonrotating,

stratified fluid at rest are

›
t
u52

›
x
p

r
0

, (5a)

052
›
z
p

r
0

1b , (5b)

›
t
b52N2w1Q , (5c)

05 ›
x
u1 ›

z
w , (5d)

where u is the horizontal speed, w is the vertical speed,

r0 is a constant density, p is the pressure perturbation,

b is the buoyancy, and Q is the buoyancy source or, in

other words, the heating. LetN be piecewise constant in

height such that

N5

�
N

1
for 0# z#H

N
2

for H, z
, (6)

where H is the tropopause. When N2 .N1, this is a

simple analog for Earth’s atmosphere in which the

troposphere is capped by the more stratified strato-

sphere. The derivation in section 2d, however, applies

equally well to any value of N2/N1 from zero to

infinity.

FIG. 2. Mean profile of the Brunt–Väisälä frequency N calcu-

lated from soundings taken every 3 h at the Darwin ARM site from

18 Jan to 3 Feb 2006. The dashed line denotes the cold-point tro-

popause at 16.9 km.

FIG. 1. (left) The time series of midtropospheric buoyancy for a variety of distances from the origin, ranging from

10 to 100 km, for a steady n5 1 heating (approximating a first baroclinicmode in the troposphere) that is held on for

all t. 0, which is obtained by integrating the CRT Green’s function in Eq. (4). The time on the abscissa is nor-

malized by the propagation speed of the wave front, Re(N1/m). The buoyancies on the ordinate are normalized by

2Re(N1/m)/B0, which is simply the value to which the midtropospheric buoyancy would asymptotically approach

shortly after the wave front passes. (right) As in (left), but for the Green’s function presented in Eq. (13).
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In the following subsections, we will review the

Green’s functions for a troposphere with a rigid lid

(N2 5‘) and a troposphere with no lid (N2 5N1) and

then present the Green’s function for a troposphere

with a leaky lid (N1 ,N2 ,‘), which, as we will see,

connects the rigid-lid and no-lid limits. To derive any of

these Green’s functions, we write the set of Boussinesq

equations [Eqs. (5)] as a wave equation for b,

›2t ›
2
zb1N2›2xb5 ›

t
›2zQ , (7)

and we seek a solution for a baroclinic tropospheric

heating of the form

Q(x, z, t)5B
0
sin(mz)H (H2 z)d(x)d(t) , (8)

where B0 is a constant, H is the depth of troposphere,

and m is taken to be one of the baroclinic modes (i.e.,

m5 np/H, where n is an integer).

a. Green’s function for a rigid lid

To begin, we reproduce the well-known solution for

an atmosphere with a rigid lid at the tropopause, which

corresponds to N2 5‘. The rigid lid requires w5 0 at

z5H, so we can formally decompose the solutions to

Eq. (7) into a set of vertical normal modes with discrete

eigenvalues. This decomposition gives the traditional

baroclinic modes, or rigid-lid modes, which are sines

(for b and w) and cosines (for p and u) with nodal or

antinodal points at the surface and tropopause (Gill

1982). Each baroclinic mode is governed by a set of

shallow-water equations with wave speedN1/m, where

m is the eigenvalue corresponding to a particular

baroclinic mode.

For a tropospherewith a rigid lid, theGreen’s function—

that is, the solution toEq. (7) for a baroclinic pulse specified

by Eq. (8)—is

brigid
m (x, z, t)5

B
0

2
[d(N

1
t/m1 x)1 d(N

1
t/m2 x)]

3H (t)sin(mz)H (H2 z) . (9)

This describes two delta-function pulses of buoyancy

propagating to the left and right with the same baroclinic

vertical structure as the forcing. The nature of this

solution follows directly from the discrete spectrum of

vertical modes for a layer of fluid with a rigid lid. By

design, the source specified by Eq. (8) excites exactly one

of the normal modes of this system, which travels with a

constant horizontal wave speed c5N1/m. In the absence

of dissipation, these pulses will propagate forever.

b. Green’s function for no lid

Next, consider a troposphere with no lid, which cor-

responds toN2 5N1. In this case, theGreen’s function—

that is, the solution to Eq. (7) for a baroclinic pulse

specified by Eq. (8)—was found by Pandya et al. (1993)

to be

b
no_lid
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2p
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t/x)sin(N

1
tz/x)

3

�
1

N
1
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1
1

N
1
t/m2 x

�
. (10)

Despite the appearance of singularities at x56N1t/m,

the solution is smooth there; at those locations, the di-

vergence from the 1/(N1t/m6 x) terms is canceled by the

sin(HN1t/x) term since m is an integer multiple of p/H.

The two pulses of buoyancy propagate horizontally at

the same speed as in the rigid-lid case, but they spread

out into smooth blobs rather than retaining their delta-

function shape.

Another notable difference from the rigid-lid solution

is the complex vertical structure of the buoyancy field.

Unlike the rigid-lid solution, which has the same vertical

structure as the heating, the no-lid buoyancy field pro-

jects onto every baroclinic mode: the buoyancy is not all

of the same baroclinicity as the heating. This reflects the

fact that the baroclinic modes are not the vertical

eigenfunctions of the system when the rigid lid is raised

beyond the tropopause. In fact, when there is no lid at

all, as in this case, the eigenvalue spectrum becomes

continuous. The relationship between the continuous

and discrete spectra is precisely that of the continuous

and discrete Fourier transforms. As the spatial domain

increases in size, the discrete transform approaches the

continuous one. Despite this, the linearized governing

Eqs. (5) require that the horizontally integrated buoy-

ancy maintains the same baroclinic structure as the

source for all time, regardless ofN2. For example, in the

case of a first-baroclinic source, the horizontally in-

tegrated buoyancy is first baroclinic for all time. This

property can most easily be seen by integrating Eq. (5c)

over x and noting that the integral of w over x must be

zero by continuity. Remarkably, it can be confirmed

numerically that the horizontal integral of bno_lid
m equals

B0 sin(mz)H (H2 z).

TABLE 1. Default parameter values, which are typical for Earth’s

tropics, used throughout the paper unless otherwise specified.

Parameter Symbol Value

Buoyancy frequency in the troposphere N1 0.01 s21

Depth of the troposphere H 17 km

Stratification ratio N2/N1 2.5
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To get a quantitative sense of how the no-lid solution

compares to the rigid-lid solution, consider the buoy-

ancy at x56N1t/m, which are the centers of the prop-

agating pulses. Taking the limit of Eq. (10) as

jxj/N1t/m, we find

b
no_lid
m (6N

1
t/m, z, t)5

B
0
m2H

2pN
1
t
sin(mz) . (11)

Note that all of the buoyancy at x56N1t/m is contained

in the same vertical mode m as the initial perturbation.

Note, also, that the amplitude goes as 1/t. Since the

horizontally integrated buoyancy is constant and pro-

jects only onto the baroclinic mode of the source, this

implies that the width of the left-moving or right-moving

pulse is proportional to t; more specifically, its width is

approximately pN1t/m
2H.

In summary, the one-way-propagating buoyancy pul-

ses can be described as propagating at a constant speed

of c5N1/m at their center and with edges that spread

away from its center at a speed of pN1/2m
2H5

(p/2mH)c. We will see in section 2d how this is modified

for N2 .N1.

c. Simple model for the decay of amplitude

What causes the pulses of buoyancy to decay in

amplitude and spread out? It is illuminating to think of

the counterpropagating pulses of buoyancy as packets

of internal gravity waves propagating away from the

source. Without a rigid lid at the tropopause, internal

gravity waves can propagate out of the troposphere.

The vertical group velocity for internal gravity waves is

proportional to the horizontal wavenumber, which

means that shorter waves radiate out of the tropo-

sphere faster than longer waves. It is this process that

causes the dispersal of the initial delta functions noted

above. After a sufficiently long time, all that remains

is a nonpropagating, horizontally uniform buoyancy

anomaly in the troposphere. Note that the net heating

to the troposphere is the same whether or not there is a

rigid lid at the tropopause: wave energy can propagate

upward, but the buoyancy is still confined to the

troposphere.

We can construct a simple model for the decay in

amplitude at jxj5N1t/m by considering the upward

radiation of gravity waves. From the dispersion re-

lation for hydrostatic gravity waves defined by Eq. (7),

we find that v5N1jkj/m, where k is the horizontal

wavenumber, so the horizontal speed of a hydrostatic

gravity wave is cx 5N1/m, and the vertical group ve-

locity of a hydrostatic gravity wave is cgz 5N1jkj/m2. A

natural time scale tk for a gravity wave of horizontal

wavenumber k to radiate up and out of the troposphere

is the depth of the troposphere H divided by the ver-

tical group velocity, or

t
k
5

m2H

N
1
jkj . (12)

Therefore, we posit that the amplitude of a plane wave

of buoyancy in the troposphere decays like exp(2t/tk).

For a buoyancy pulse that begins as a delta function in

x, we can approximate the evolution of the resulting

counterpropagating buoyancy pulses (or wave packets)

by modifying the rigid-lid solution in Eq. (9) to include

this exponential decay of gravity waves. Taking the

Fourier transform of Eq. (9) yields

~brigid
m (k, z, t)5

1ffiffiffiffiffiffi
2p

p
ð‘
2‘

dxeikxbrigid
m (x, z, t)

5
B

0

2
ffiffiffiffiffiffi
2p

p (eikN1t/m 1 e2ikN1t/m)sin(mz) .

We can approximate the decay of gravity waves that

occurs in the no-lid atmosphere by multiplying this

Fourier-transformed rigid-lid solution by exp(2t/tk),

that is,

~b
no_lid
m (k, z, t)’

B
0

2
ffiffiffiffiffiffi
2p

p (eikN1t/m 1 e2ikN1t/m)e2t/tk sin(mz) .

Since 1/tk is proportional to jkj, this modification does

not alter the horizontally integrated buoyancy, which is

contained in the k5 0 mode. By performing an inverse

Fourier transform evaluated at jxj5N1t/m, we get

b
no_lid
m (6N

1
t/m, z, t)’

1ffiffiffiffiffiffi
2p

p
ð‘
2‘

dke6ikN1t/m ~b
no_lid
m (k, z, t)

5
11 2m2H2

11 4m2H2

B
0
m2H

pN
1
t
sin(mz)

’
B

0
m2H

2pN
1
t
sin(mz) ,

which is the expression previously derived in Eq. (11).

This confirms Eq. (12) as the approximate residence

time scale for plane waves in the troposphere.

d. Green’s function for a leaky lid

Having explored the limiting cases of a rigid lid and no

lid, we can turn to our goal of deriving the Green’s

function for the case of a troposphere with a leaky lid,

which corresponds to N1 ,N2 ,‘. For details of the

derivation, see the appendix. The Green’s function—

that is, the solution to Eq. (7) for a baroclinic pulse

specified by Eq. (8)—is found to be
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(13)

This solution is valid over the full range of N2/N1, from

0 to‘, which means that it encompasses both the rigid-lid

and no-lid solutions.WhenN2/N1 5 1, bleaky
m equals bno_lid

m ;

that is, it gives the solution for constant N from Eq. (10).

In the limit ofN2/N1 /‘, bleaky
m 5 brigid

m ; that is, it gives the

solution for a rigid-lid tropopause from Eq. (9).

Figure 3 compares the no-lid solution (N1 5N2 5
0:01 s21) and the leaky-lid solution (N1 5 0:01 s21 and

N2 5 0:025 s21) at t5 1 h in response to the tropospheric

heating in Eq. (8) with H 5 17km, m 5 p/H, and

B05 1m2 s22. Compared to the no-lid solution, the first-

baroclinic gravity waves are more coherent in the tro-

posphere (i.e., they are more compact in the horizontal

and have higher peak buoyancies). At the tropopause,

there is a discontinuity in buoyancy at the tropopause

due to the discontinuity of N2 in Eq. (5c). In the

stratosphere, the oscillations in buoyancy have a vertical

wavelength that is shorter by the factor of N1/N2, and

their amplitude is greater. As with the no-lid solution, it

can be confirmed that the leaky-lid solution has the

following properties: bleaky
m satisfies Eq. (7) with Q5 0

for all t. 0; (1/N2)›tb
leaky
m and (1/N2)›z›tb

leaky
m are con-

tinuous across the tropopause, guaranteeing continuity

of u and w there; the horizontal integral of bleaky
m equals

B0 sin(mz)H (H2 z); and bleaky
m is zero for all jxj. 0

at t5 0.

Although t appears in several places in Eq. (13), the

temporal evolution of bleaky
m is surprisingly simple. De-

fining x̂5mx/N1t, we can write bleaky
m as

bleaky
m (x, z, t)5

B
0
m

2pN
1
t

cos(mH)sin(mH/x̂)sin(mz/x̂)

N
1

N
2

1

�
N

2

N
1

2
N

1

N
2

�
sin2(mH/x̂)

3

�
1

11 x̂
1

1

12 x̂

�
for z#H . (14)

Writing bleaky
m in this way makes clear that the shape of

the buoyancy distribution is invariant in time: the

buoyancy distribution simply stretches out linearly in

time (i.e., position x̂ in the distribution travels away from

the origin at speed x̂N1/m) as its overall amplitude de-

creases as 1/t. Therefore, one plot of bleaky
m is sufficient to

illustrate its evolution for all time.

Plots of bleaky
m are shown in the top row of Fig. 4 for

cases of, from left to right, no lid and first baro-

clinic (N2/N1 5 1 and m5p/H); no lid and second

baroclinic (N2/N1 5 1 andm5 2p/H); leaky lid and first

baroclinic (N2/N1 5 2:5 andm5p/H); and leaky lid and

second baroclinic (N2/N1 5 2:5 and m5 2p/H). For an

apples-to-apples comparison, these are plotted on the

same color scale at a time in their evolution when the

pulses have reached a common distance from the origin

(i.e., at a time for the second-baroclinic pulses that is twice

the time for the first-baroclinic pulses). The abscissa ranges

over plus and minus twice that distance. The ordinate

ranges over the full depth of the troposphere.

At the center of each pulse, bleaky
m evaluates to

bleaky
m (6N

1
t/m, z, t)5

N
2

N
1

B
0
Hm2

2pN
1
t
sin(mz) for z#H .

(15)

Since the buoyancy pulses travel at a speed of

cgx 5N1/m, their amplitude is proportional tom/cgxt. For

the same distance traveled (i.e., for the same value of

cgxt), the amplitude of the wave is proportional to the

baroclinicity (i.e., proportional tom). Since the width of

the buoyancy pulse is inversely proportional to the

amplitude, this means that when a second-baroclinic

pulse has traveled 100 km, it is twice as compact in the

horizontal as the second-baroclinic pulse when it rea-

ches 100km. In summary, the nth-baroclinic pulse
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spreads out at 1/n2 the rate per time, and 1/n the rate per

distance, as compared to a first-baroclinic pulse.

Although the buoyancy pulse at x56N1t/m has the

same baroclinicity as the initial heating, this is not gen-

erally true at other x. This is expected since any initial

vertical structure that is zero in the stratosphere is not a

normal mode of the leaky-lid atmosphere. The eigen-

value spectrum is continuous for any atmosphere that is

unbounded in the z direction, so any such initial vertical

structure projects onto an infinite number of normal

modes, all of which have different phase speeds. These

different components of the initial buoyancy distribu-

tion radiate away from the initial heat source at different

speeds and thus begin decohering immediately, leading

to the complicated horizontal and vertical structure of

bno_lid
m for t. 0, which is visible in the top row of Fig. 4.

Mathematically, this complexity stems from the tz/x

argument in Eq. (13).

Given this complexity, how can we make contact

with the standard rigid-lid paradigm? Is there some

way that we can write bleaky
m in terms of the rigid-lid

modes even though the rigid-lid modes are not normal

modes of the leaky-lid atmosphere? The answer is yes:

we could simply write bleaky
m as a sum of rigid-lid

modes. But this approach is of little conceptual ad-

vantage if, say, a first-baroclinic heating generates a

FIG. 3. (left) The no-lid solution bno_lid
m at t 5 1 h in an atmosphere with N1 5 N2 5 0.01 s21 that was subjected

to the heating given by Eq. (8) withH5 17 km,m5 p/H, and B0 5 1m2 s22. (right) As in (left), but for bleaky
m with

N1 5 0.01 s21 and N2 5 0.025 s21.

FIG. 4. (top) TheGreen’s function bleaky
m in Eq. (13) for all combinations ofN2/N1 2 (0, 1) and

m 2 (p/H, 2p/H) on a common color scale at the times when the pulses have reached a com-

mon distance, with red being positive and blue being negative. (middle) As in (top), but for the

approximation of bleaky
m given in Eq. (17). (bottom) The projections of bleaky

m onto the first-

baroclinic and second-baroclinic rigid-lid modes, as given by Eq. (16).
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buoyancy pulse that projects strongly onto higher-

baroclinic modes.

We can quantify these contributions by projecting

bleaky
m onto the various baroclinic modes. The projection

of bleaky
m onto baroclinic mode m0, which we will denote

by a
leaky
m,m0 , is

a
leaky
m,m0 (x, t)5

2

H

ðH
0

dz sin(m0z)bleaky
m (x, z, t)

5
2B

0
N

1
tx2

pmm0H
sin2(HN

1
t/x)

N
1

N
2

1

�
N

2

N
1

2
N

1

N
2

�
sin2(HN

1
t/x)

3
cos(mH)cos(m0H)

[(N
1
t/m)2 2 x2][(N

1
t/m0)2 2 x2]

. (16)

For the four cases shown in the top row of Fig. 4, the

projections onto the first and second baroclinic modes

are shown in the bottom row of Fig. 4. These are

plotted on common axes with the red curves repre-

senting the projection onto the first baroclinic mode

and the blue curves representing the projection onto

the second baroclinic mode. In the no-lid troposphere,

a first-baroclinic heating generates a buoyancy pat-

tern that projects strongly onto the second baroclinic

mode; as seen in the bottom-left panel of Fig. 4, the

maximum amplitude of the m0 5 2p/H projection is

nearly as large as the maximum amplitude of the

m0 5p/H projection. For the leaky lid with a realistic

N2/N1, however, a first-baroclinic heating generates a

buoyancy pattern that projects predominantly onto

the first baroclinic mode.

Based on these findings, we conclude that, unlike in a

no-lid atmosphere, the projection of the buoyancy onto

its original vertical structure is a good approximation

in a leaky-lid atmosphere with a realistic stratification

jump. This means, for example, that we can approximate

bleaky
m by aleakym,m sin(mz):

bleaky
m (x, z, t)’

B
0

2p

sin2(HN
1
t/x)

N
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N
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1
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2
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2
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3
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2

1

(N
1
t/m1 x)2

1
1

(N
1
t/m2 x)2

#
sin(mz) for z#H . (17)

This approximation has the great advantage of having a

rigid-lid vertical structure—that is, the sin(mz)—while

still retaining the horizontal decoherence generated by

the leaky lid.

This approximation to bleaky
m is plotted in the middle row

of Fig. 4. For the no-lid atmosphere, the approximation

misses much of the structure of the buoyancy, especially

for a first-baroclinic heating. For a leaky-lid atmosphere,

however, the approximation is quite accurate.

Finally, let us return to Fig. 1. The right panel shows

the response to a first-baroclinic heating that is confined

to the troposphere and is turned on at time t5 0. Unlike

the CRT modes, which must be excited by heating the

stratosphere as well, the atmosphere reaches a steady

state in response to this steady tropospheric heating.

Since any steady tropospheric heating can be con-

structed out of the bleaky
m Green’s functions, this tells us

that, for a leaky-lid atmosphere, any steady heating

confined to the troposphere will generate a steady

response.

e. Leaky-lid wave decay

The preceding analysis tells us about the evolution of

buoyancy caused by a heating confined to x 5 0 in the

troposphere. But what about a heating that is sinusoidal

in x? How does the leaky lid modify the tropospheric

residence time for such waves?

In principle, we could use the Green’s function bleaky
m

to calculate the evolution of a horizontally sinusoidal

heating, but in practice, we were unable to find a way to

perform this calculation analytically. Instead, we can

make an educated guess based on what we have

learned so far and then check that guess against a nu-

merical calculation. In Eq. (11), we introduced a time

scale for waves in the no-lid troposphere, and a com-

parison of Eqs. (11) and (15) suggests a simple modi-

fication for the leaky-lid troposphere. Equations (11)

and (15) are the amplitudes of the tropospheric buoy-

ancy at x56N1t/m for the no-lid and leaky-lid cases,

respectively. These expressions differ only by an

overall factor of N2/N1. Since amplitude and width of a

buoyancy pulse are inversely related, this means that a

one-way-propagating buoyancy pulse widens N1/N2

times slower in the presence of a leaky lid. Since the

emission of waves from the troposphere is responsible

for widening the pulse, this implies that waves exit the

troposphere N1/N2 times slower in the leaky-lid case

compared to the no-lid case and, therefore, reside in
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the troposphere N2/N1 times longer. Therefore,

Eq. (12) generalizes to

t
k
5

N
2

N
1

m2H

N
1
jkj . (18)

This time scale exhibits the behavior we expect from

studying the Green’s function. Namely, the residence

time is longer for longer waves (smaller jkj) and formore

rigid lids (larger N2/N1).

f. Numerical validation of the wave time scale

To confirm that the time scale in Eq. (18) is a good

approximation for a freely propagating gravity wave in

an atmosphere with two layers of differing N, we

performed a series of numerical simulations using

Dedalus, a flexible, open-source, Python-based frame-

work for solving partial differential equations (www.

dedalus-project.org). Dedalus is a spectral solver, and

we decompose the domain using a Chebyshev basis in

the z direction and Fourier modes in the horizontal. We

solve the linearized Boussinesq system (5a)–(5d) on a

periodic domain of width L 5 3000km, with rigid

boundaries at the top and bottom of the domain. The

tropopause is located at H 5 17km, and the rigid top is

placed at 170 km, which is sufficiently high to prevent

reflected waves from reentering the troposphere for the

duration of the simulation.

To test Eq. (18), we initialize the system with a

buoyancy perturbation confined to the troposphere,

characterized by a single horizontal wavenumber k

and vertical structure corresponding to a single baro-

clinic mode m. While we are ultimately interested in

the amplitude of the buoyancy anomaly, diagnosing

the wave energy, which is proportional to the ampli-

tude squared, provides a straightforward (and single

signed) way of bookkeeping in this simple simulation

setup. We compare the evolution of the wave energy

in the troposphere to the time scale predicted by

Eq. (18), bearing in mind that, because energy is

proportional to amplitude squared, the decay time

scale for energy is tk/2. Each simulation is run for at

least tk, over which we expect the energy in the tro-

posphere to undergo two e-foldings. We run a total of

80 simulations, corresponding to all combinations of

m5p/H and m5 2p/H; N2/N1 5 1, 2, 3, 4, and 5; and

k5 2pn/L for integer values of n from 3 through 10,

which correspond to horizontal wavelengths ranging

from 300 to 1000 km. At each time step, the buoyancy

is projected onto the baroclinic mode of the original

heating and the tropospheric energy in that mode is

calculated. The decay time scale is then estimated

as 22 times the inverse of the slope of the linear

regression of the logarithm of tropospheric energy

versus time. In Fig. 5 tk calculated from each simula-

tion is plotted against the theoretical tk from Eq. (18),

along with a dashed one-to-one line. Figure 5 shows

very good agreement between the theory and simu-

lation for most parameter values, confirming that the

approximate time scale in Eq. (18) correctly charac-

terizes the emission rate of internal gravity waves

from an Earthlike troposphere.

3. Lifetime of a pulse of buoyancy

We are now prepared to investigate how a heating of

finite width propagates through a two-dimensional tro-

posphere. In principle, we can use the Green’s function

to calculate how any buoyancy distribution evolves to a

horizontally uniform final state. For simplicity, we focus

here on heatings that have a top-hat distribution in the

horizontal,

Q5 b
0
H (a/22 jxj)d(t)sin(mz) , (19)

where a is the width of the heating. This generates a

buoyancy distribution at t5 01 that is given by

btop_hat
m (x, z, 01)5b0H (a/22 jxj)sin(mz).

To find out how this buoyancy evolves in time, we can

convolve this initial buoyancy distribution with the

Green’s function [i.e., with the bleaky
m from Eq. (13)].

Before we do that, however, let us see if we can learn

something about its behavior by considering the resi-

dence time scales for its Fourier components. The

Fourier transform of btop_hat
m (x, z, 01) is

FIG. 5. Simulated tropospheric decay time scale tk vs that pre-

dicted from Eq. (18) for 80 simulations, which encompass all

combinations of N2/N1 5 1, 2, 3, 4, and 5, and k 5 2pn/3000 km21

for integer values of n from 3 through 10, for both the first and

second vertical mode (m5p/H, 2p/H).
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~b
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The Fourier transform of the same amount of horizon-

tally integrated buoyancy concentrated at x5 0 [i.e.,

bleaky
m (x, z, 01) from Eq. (13) with B0 5 ab0] is

~bleaky
m (k, z, 01)5

1ffiffiffiffiffiffi
2p

p
ð‘
2‘

dxeikxbleaky
m (x, z, 01 )

5
ab

0ffiffiffiffiffiffi
2p

p sin(mz)H (H2 z) . (21)

Taylor expanding Eq. (20) in k, we find

~b
top_hat
m (k, z, 01)5 ~bleaky

m (k, z, 01)

�
12

a2k2

24
1⋯

�
.

For jkj satisfying a2k2/24 � 1 (i.e., for

jkj& 1/a � 2
ffiffiffi
6

p
=a), the Fourier transform of ~btop_hat

m is

practically indistinguishable from the Fourier transform

of ~bleaky
m .

Since waves emanate from the troposphere on a time

scale proportional to their wavenumber, there will be a

time tmelt when wavenumbers jkj. 1/a will have mostly

left the troposphere. After that time, ~btop_hat(k, z, t)

is practically indistinguishable from ~bleaky(k, z, t).

We refer to tmelt as the time scale for ‘‘melting’’ because

this is the time by which the initial horizontal shape of

the buoyancy pulse has melted away. Based on the

preceding argument, we can define tmelt as the time

at which wavenumber 1/a has experienced an e-folding

of decay; that is, we define tmelt as the tk from Eq. (18)

with k5 1/a,

tmelt 5
N

2

N
1

m2Ha

N
1

. (22)

By Eq. (15), the amplitude of bleaky
m at x56N1t

melt/m

and t5 tmelt is b0/2p.

We can now summarize the evolution of the initial

top-hat pulse. At time t5 am/2N1, the top-hat buoyancy

pulse of magnitude b0 and width a splits into two pulses,

each with magnitude b0/2 and width a, one of which is

right moving and the other left moving. At time t5 tmelt,

each of the unidirectional pulses has melted down to a

peak amplitude of b0/2p and is indistinguishable from an

initial delta-function buoyancy pulse. For t. tmelt, the

buoyancy evolves as bleaky
m with the amplitude at

x56N1t/m equal to b0t
melt/2pt.

Figure 6 compares the evolution of the initial top hat

(solid red), as calculated numerically by convolution

with the Green’s function, against the evolution of an

initial delta-function source (dashed green) with the

same horizontally integrated buoyancy for the case of

N2/N1 5 2:5. Also shown is the evolution of the top-hat

pulse for a rigid lid (dashed black; i.e., for N2/N1 5‘).
The abscissa is a normalized distance in which unity is

the distance traveled in an amount of time equal to tmelt.

As expected, the top-hat pulse has become in-

distinguishable from an initial delta-function pulse by

the time t5 tmelt.

We can perform a further check of tmelt by numeri-

cally convolving an initial top-hat distribution with the

Green’s function bleaky
m from Eq. (13) and diagnosing the

time when the amplitude at jxj5N1t/m equals b0/2p.

The top panel of Fig. 7 shows the amplitude of the right-

moving half of a first-baroclinic top hat at x5N1t/m for

N2/N15 1, 2.5, 5, and 10. The x axis is normalized by tmelt

so that the curves are independent of the width of the

initial top hat. The first-baroclinic Green’s function

amplitude [i.e., bleaky
m (N1t/m, H/2, t)] is given by the

dashed black line. As the right mover and left mover

separate at small t/tmelt, there are undulations in the

buoyancy distribution that cause the buoyancy to briefly

exceed its initial value of b0/2. By t/tmelt 5 1, though, all

the curves have converged to the Green’s function

amplitude.

The bottom panel of Fig. 7 shows the approximate

tmelt from Eq. (22) plotted against the tmelt diagnosed

from the time it takes for the numerically integrated,

right-moving, first-baroclinic, top-hat pulses to decrease

their peak amplitude to b0/2p. The top hats are in-

tegrated for all combinations of a5 100, 500, 2000, 4000,

and 8000 km, andN2/N1 5 1, 2.5, 5, and 10. These points

all fall very close to the black dashed one-to-one line.

A few things are notable about the lifetimes of

buoyancy anomalies implied by tmelt. First, the time

scale is proportional to N2/N1 so that as N2/N1 /‘,
tmelt /‘ too, which is what we expect for the rigid-lid

limit. It is also proportional to the width of the pulse, so

wider buoyancy anomalies retain their horizontal shape

longer. Finally, it is quadratic in m, the baroclinic mode

of the initial anomaly. This has potentially significant

implications for the wave spectrum of equatorial Kelvin

waves: the second-baroclinic pulses retain their original

shapes 4 times as long as first-baroclinic pulses.

In general, these decay time scales are quite fast. For a

first-baroclinic buoyancy pulse (m5p/H) in an Earth-

like atmosphere (N2/N1 5 2.5, N1 5 0.01 s21, and H 5
17 km) with a width of 100km, the original horizontal

shape of the left-moving and right-moving buoyancy

pulses melts away in only 4 h, which is how long it takes
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each pulse to travel about 800 km from their origin. By

that time, each of the pulses has been reduced in am-

plitude by a factor of 1/p. After this time, the amplitudes

decrease as 1/t so that, by 8 h, the peak amplitudes have

been reduced by another factor of 2.

Although the melting time depends on the charac-

teristic width of the initial pulse of heating, the time to

homogenize that heating over a periodic domain is

FIG. 7. (top) Fraction of the initial peak buoyancy at x5N1t/m as

a function of t/tmelt for the right-moving half of a first-baroclinic

top-hat pulse of buoyancy, for N2/N1 5 1, 2.5, 5, and 10. (bottom)

Estimated tmelt from Eq. (22) plotted against the actual tmelt for

first-baroclinic top hats with a5 100, 500, 2000, 4000, and 8000 km,

for N2/N1 5 1, 2.5, 5, and 10. The actual tmelt is found by numeri-

cally integrating the Green’s function in Eq. (13) and finding the

time when the buoyancy at x5N1t/m drops below b0/2p.

FIG. 6. The red solid line shows the projection of buoyancy from

a first-baroclinic top-hat heating onto the first baroclinic mode at (top)

t5 0, (middle) tmelt/2, and (bottom) tmelt for N2/N1 5 2:5, which is

found by numerically convolving a top hat with the baroclinic Green’s

function in Eq. (13). The green dashed line shows the baroclinic

Green’s function in Eq. (13) with the same profile of horizontally in-

tegrated buoyancy. This is an excellent approximation to the top hat

for times greater than tmelt in Eq. (22). The abscissa is the distance

normalized by the baroclinic wave speed (N1/m) times tmelt.
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independent of the initial pulse width. To homogenize

over a periodic domain of length L, we must wait a time

equal to tk from Eq. (18) with k5 2p/L. For a first-

baroclinic pulse on a periodic domain of length L equal

to Earth’s equatorial circumference of 40 000 km, this

homogenization takes about 10 days. This is a re-

markably short period of time: an isolated pulse of

tropospheric heating generates left-moving and right-

moving pulses that reduce to horizontal wavenumbers 1

and 2 by day 2.5, to horizontal wavenumber 1 by day 5,

and to an approximately uniform heating around the

entire 40 000-km-long domain by day 10.

4. Conclusions

Assuming that the tropical tropopause is a rigid lid

greatly simplifies tropical wave dynamics but is not

physically justifiable and leads to a choice between the

spurious persistence of buoyancy anomalies in the tro-

posphere or using unrealistically strong damping. In this

study, we show that replacing the rigid lid with an

overlying layer of stratified fluid resolves this difficulty.

We have derived Eq. (13), which is the Green’s function

for a two-dimensional, nonrotating, Boussinesq fluid

composed of two layers of constant but differing buoy-

ancy frequencies, which are meant to represent the

troposphere and stratosphere. This solution is valid for

any ratio of the buoyancy frequencies in the two layers.

It includes the rigid-lid solution (an infinitely stratified

upper layer) and the no-lid solution (a stratosphere with

the same stratification as the troposphere) as limiting

cases. We have used this Green’s function to show that

the dispersive nature of upward internal gravity wave

propagation damps away buoyancy anomalies in Earth’s

troposphere on time scales from hours to days, which are

comparable to the linear-damping time scales used in

simplemodels of the tropical atmosphere. This naturally

leads to the speculation that simple models of the at-

mosphere with rigid lids at the tropopause may require

strong Rayleigh friction or Newtonian cooling in part

because they lack this process.

Of course, the dispersion of vertically propagating in-

ternal gravity waves is not equivalent to a linear damping

(e.g., Rayleigh friction or Newtonian cooling). While both

processes smooth out buoyancy anomalies, linear damping

also removes the horizontal mean buoyancy anomaly. On

the other hand, vertically propagating gravity waves leave

behind a steady, horizontally uniform buoyancy anomaly,

and in a steady state, this must be removed by a domain-

mean diabatic cooling.
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APPENDIX

Deriving the Green’s function

The path to our solution for an atmosphere with dif-

ferent N in the troposphere and stratosphere adheres

closely to the derivations published by Lin and Smith

(1986) and Pandya et al. (1993) for an atmosphere with

constant N.

We begin by rewriting the two-dimensional, linear-

ized Boussinesq equations [Eqs. (5)] as wave equations

for w in each layer:

›2t ›
2
zw1

(x, z, t)1N2
1›

2
xw1

(x, z, t)5 ›2xQ, 0# z#H ,
(A1a)

›2t ›
2
zw2

(x, z, t)1N2
2›

2
xw2

(x, z, t)5 0, z.H . (A1b)

Then, we consider a buoyancy source of the form

Q5B0d(t)d(x)d(z2 z0). Taking the Laplace transform

in time (t/ s) and the Fourier transform in x (x/k) of

Eqs. (A1), we find

›2zŵ1
(x, z, t)1 l2ŵ

1
(x, z, t)5

l2ffiffiffiffiffiffi
2p

p
N2

1

B
0
d(z2 z

0
), z#H ,

(A2a)

›2zŵ2
(x, z, t)1 l2

2ŵ2
(x, z, t)5 0, z.H , (A2b)

where l[ iN1jkj/s, and l2 [ iN2jkj/s. The presence of

d(z2 z0) in the source termQ imposes a jump condition

on w1 at z5 z0, which we can find by integrating

Eq. (A2a) twice in z:

[ŵ
1
]1
2
5 0, (A3)

[›
z
ŵ

1
]1
2
5

l2ffiffiffiffiffiffi
2p

p
N2

1

B
0
, (A4)

where [ ]12 represents the difference across z5 z0.

We seek a solution subject to conditions at the surface

(z 5 0) and at the tropopause (z 5 H), as well as a ra-

diation condition as z/‘. At the surface, the rigid

lower boundary requires ŵ1 5 0. At the tropopause

(z 5 H), enforcing continuity of pressure and vertical
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velocity requires ŵ1 5 ŵ2 and ›zŵ1 5 ›zŵ2. Above

z 5 H, we require that ŵ2 / 0 as z/‘.
If the buoyancy frequency is constant (i.e., if N5N1

everywhere), then the solution to the transformed

Eqs. (A2) is

ŵ
1
5 ŵ

2
[ ŵ6

0 5

8>>>><
>>>>:

2
lB

0ffiffiffiffiffiffi
2p

p
N2

1

eilz0 sin(lz) , 0# z# z
0

2
lB

0ffiffiffiffiffiffi
2p

p
N2

1

sin(lz
0
)eilz , z

0
, z

.

(A5)

This solution applies throughout the whole atmosphere,

so we have defined a new variable ŵ6
0 , where the plus

sign refers to the solution for z. z0 andminus sign refers

to the solution for z, z0.

Multiplying by 1/s in Laplace-transformed space is in-

tegration in time in real space, sowe solve for the buoyancy

by multiplying the ŵ solutions by2N2
1 /s and inverting the

Fourier and Laplace transforms. We find that the buoy-

ancy due to a source term Q5B0d(t)d(x)d(z2 z0) in an

atmosphere with constant N is

b
no_lid

point (x, z, t)5
B

0
N

1
t

px2
sin

�
N

1
tz

x

�
sin

�
N

1
tz

0

x

�
. (A6)

To find the solution for the source term with baroclinic

structure in the troposphere given by Eq. (8), we in-

tegrate Eq. (A6) against sin(mz0) through the

troposphere:

b
no_lid
m (x, z, t)5

ðH
0

dz
0
sin(mz

0
)b

no_lid

point (x, z, t)

5
B

0

2p
cos(mH)sin(HN

1
t/x)sin(N

1
tz/x)

3

�
1

N
1
t/m1 x

1
1

N
1
t/m2 x

�
, (A7)

where m is one of the baroclinic modes. This is the

Green’s function for the constant-N atmosphere, which

is Eq. (10) in the main text.

Now, suppose N2 5 (11 g)N1, where g$21. While

we cannot integrate the modified version of Eq. (A5)

directly for the case N1 6¼ N2, we can expand the

modified version of Eq. (A5) in g around g5 0 and

integrate each term in the series. By integrating

enough terms and determining what the series con-

verges to, we find a solution valid for all g$21 (i.e.,

for all N2 $ 0).

After rewriting ŵ1 in terms of g, we find

ŵ
1
5

8>>>>><
>>>>>:

2
lB

0ffiffiffiffiffiffi
2p

p
N2

1

eilz0 sin(lz)

(
11

g

2
[12 e2il(H2z0)]

11
g

2
(12 e2ilH)

)
for 0# z# z

0

2
lB

0ffiffiffiffiffiffi
2p

p
N2

1

 
eilz0 sin(lz)

(
11

g

2
[12 e2il(H2z0)]

11
g

2
(12 e2ilH)

)
2 sin[l(z2 z

0
)]

!
for z

0
, z#H

(A8)

and

ŵ
2
52

lB
0ffiffiffiffiffiffi

2p
p

N2
1

[eilzsin(lz
0
)]

eilg(z2H)

11
g

2
(12 e2ilH)

2
64

3
75, z.H .

(A9)

We focus our attention on the solution in the tropo-

sphere, Eq. (A8), which can be expanded about g5 0 by

noting that the denominator becomes

h
11

g

2
(12 e2ilH)

i21

’ 12
g

2
(12 e2ilH)

1
g2

4
(12 e2ilH)2 2⋯ . (A10)

Recalling the constant-N solution ŵ6
0 , where the plus

sign refers to the solution for z. z0 and the minus sign

refers to the solution for z, z0, the first-order expansion

in g can be written as

ŵ
1
’

8><
>:

ŵ2
0 1

g

2
e2ilH(12 e22ilz0 )ŵ2

0 for 0# z, z
0

ŵ1
0 1

g

2
e2ilH(12 e22ilz0 )ŵ2

0 for z
0
, z#H

.

(A11)

Finding the higher-order terms is straightforward, and

the nth-order term is

	g
2


n
(e2ilH 2 1)n21

e2ilH(12 e22ilz0 )ŵ2
0 . (A12)
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As in the constant-N case, we solve for the buoyancy

by multiplying by 2N2
1 /s and inverting the Laplace

and Fourier transforms. In this way, we calculate

successively higher-order approximations to the buoy-

ancy in the troposphere and eventually determine the

series converges to

b
leaky
point(x, z, t)5 b

no_lid

point (x, z, t)3
11 g

11 (2g1 g2) sin2
	HN

1
t

x


 for z#H . (A13)

The solution for N1 6¼ N2 is just the constant-N solution

(A6) multiplied by a new factor. Note that this expres-

sion does not rely on the smallness of g; it is valid over

the entire range ofN2/N1 from 0 to‘, which corresponds
to g521 to ‘.

Since the multiplicative factor that converts the con-

stant-N solution (A6) to the differing-N solution (A13)

is independent of z, the solution for the buoyancy source

with baroclinic structure given by Eq. (8) follows easily

from Eq. (A7):

bleaky
m (x, z, t)5 b

no_lid
m (x, z, t)3

11 g

11 (2g1 g2) sin2
	HN

1
t

x


 for z#H . (A14)

This solution is the same as the tropospheric part of

Eq. (13). Following a similar set of steps reveals the

stratospheric part of the solution.
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