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ABSTRACT

The Davies-Jones formulation of effective buoyancy is used to define inertial and buoyant components of

vertical force and to develop an intuition for these components by considering simple cases. This de-

composition is applied to the triggering of new boundary layer mass flux by cold pools in a cloud-resolving

simulation of radiative–convective equilibrium (RCE). The triggering is found to be dominated by inertial

forces, and this is explained by estimating the ratio of the inertial forcing to the buoyancy forcing, which scales

as H/h, where H is the characteristic height of the initial downdraft and h is the characteristic height of the

mature cold pool’s gust front. In a simulation of the transition from shallow to deep convection, the buoyancy

forcing plays a dominant role in triggering mass flux in the shallow regime, but the force balance tips in favor

of inertial forcing just as precipitation sets in, consistent with the RCE results.

1. Introduction

The initiation of convection is an outstanding and

pressing issue in cloud dynamics. Clarification of the

mechanisms involved is necessary for the construction of

reliable parameterizations, and in particular for reliably

‘‘closing’’ mass flux schemes, which must diagnose

cloud-base mass flux in terms of prognostic variables.

Many current mass flux schemes, such as the Zhang–

McFarlane scheme (Zhang and McFarlane 1995) cur-

rently employed in the Community Atmosphere Model

(Neale et al. 2013), have closures that rely on uncertain

convective time-scale parameters, to which the parent

models exhibit considerable sensitivity (Qian et al. 2015;

Mishra 2011; Mishra and Srinivasan 2010). Thus, a firm

understanding of how convection is initiated is critical

for trustworthy convective parameterizations and ac-

curate simulations of global climate.

Though convection can take many forms (e.g., trade

cumulus, squall lines, mesoscale convective systems) and

is variously influenced by the large-scale environment

(e.g., surface temperature gradients, wind shear, and

large-scale verticalmotion), themass flux closure problem

remains unsolved even in the simple case of unorganized

radiative–convective equilibrium (RCE) over an ocean

with uniform temperature. It is known, however, that in

cloud-resolving model (CRM) studies of RCE, convec-

tion is preferentially triggered at cold-pool gust fronts, as

demonstrated by Tompkins (2001, hereafter T01). Thus, a

closer study of what happens at such gust fronts is neces-

sary to understand how convection in RCE is generated.

That gust fronts in general can trigger convection (i.e.,

generate boundary layer plumes with significant vertical

velocity) is well known, for example, from the study of

squall lines (Weisman and Rotunno 2004) or mid-

latitude continental convection (Droegemeier and

Wilhelmson 1985). In these cases it has generally been

assumed that the triggering is dynamical in nature—that

is, that it arises from horizontal convergence at the gust

front. For oceanic RCE, however, T01 noted that the

thermal recovery of mature cold pools, along with
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pronouncedmoisture anomalies at the gust front, yield a

dramatic reduction in convective inhibition (CIN) and

enhancement of convective available potential energy

(CAPE) there, pointing to a strong thermodynamic role

for cold pools in organizing convection. While neither

CIN nor CAPE directly relate to the generation of

boundary layer mass flux, the thermal recovery of the

mature cold pools pointed out by T01, along with the

virtual effect due to the moisture anomalies at the gust

front, raise the possibility that there is a significant

buoyant contribution to the initial triggering. Our main

goal in this paper is to assess this possibility, by evalu-

ating the relative roles of mechanical and thermody-

namical forces in generating mass flux at cold-pool gust

fronts in oceanic RCE. We will focus on how low-level

(z 5 300m) mass flux is generated and leave aside for

the time being the question of how that low-level mass

flux relates to cloud-base mass flux. Answering the latter

question will be critical for solving the mass flux closure

problem discussed above, and our work here can be seen

as a first step in that direction.

Assessing the relative roles of thermodynamical and

mechanical accelerations will require us to define these

quantities, so we propose here the following simple

definitions. We define the vertical buoyant acceleration

[or ‘‘effective buoyancy’’; Davies-Jones (2003, hereafter

DJ03)] ab to be the Lagrangian acceleration that would

result if the wind fields were instantaneously zeroed out;

that is,

ab[
dw

dt

����
u50

, (1)

where u5 (u, y, w) is the wind field. Up to a factor of

r(z) (a reference density profile), this will be our

‘‘thermodynamic force.’’ We analogously define the

vertical inertial acceleration ai to be the Lagrangian

vertical acceleration resulting from an instantaneous

zeroing out of any horizontal density anomalies; that is,

ai [
dw

dt

����
r5r

, (2)

where r is the system density (including the weight of

hydrometeors). Up to a factor of r, this will be our

‘‘mechanical’’ or ‘‘dynamical’’ force, though it is really

due entirely to inertia, as we will see.

We will show in the next section that dw/dt5 ab 1 ai
and that ab and ai depend entirely on density and wind

fields, respectively, and thus constitute a suitable de-

composition of vertical force into thermodynamic and

mechanical components. Mathematically equivalent

decompositions are somewhat well known and have

been considered by previous authors (e.g., DJ03; Xu and

Randall 2001; Krueger et al. 1995b), but the definitions

(1) and (2) are new. In addition to bearing a simple

physical interpretation, these definitions also yield un-

ambiguous boundary conditions for ab and ai, which are

often imposed by hand (DJ03; Klemp and Rotunno

1983) and can be a source of ambiguity (Markowski and

Richardson 2011, p. 29).

A central feature of the definition (1) is that ab in-

cludes both the Archimedean buoyancy B as well as the

environmental response to the accelerations produced

by B. We will see that ab can be very different in mag-

nitude and spatial distribution thanB, to the degree that

B cannot always be considered a first approximation for

ab. Thus, a proper determination of the character of

convective triggering by cold pools depends crucially on

considering ab rather than B, as advocated by Doswell

and Markowski (2004).

We begin by using the definitions (1) and (2) to derive

diagnostic Poisson equations for ab and ai.With a proper

force decomposition in hand, we then run a CRM in

RCE and diagnose ab and ai at cold-pool gust fronts and

across the entire domain. From this, we derive evidence

that ai is the primary driver behind tropical convective

triggering and give a simple argument for why this

should be. Our argument suggests that in the absence of

cold pools, ab may dominate; we confirm this by

running a shallow-to-deep convection simulation, dur-

ing which the dominant forcing transitions from ab to ai
as precipitation sets in and cold pools appear.

2. Buoyant and inertial accelerations

a. Vertical force decomposition

We begin by deriving diagnostic equations for ab and

ai. Our starting point is the anelasticmomentum equation

r
du

dt
52$p2 rgẑ , (3)

where p is the pressure and g is the gravitational accel-

eration. There is no Coriolis term as we are considering

equatorial, oceanic RCE. A common approach is to

approximate (3) by introducing a reference pressure

profile p(z) in hydrostatic balance with r, along with

accompanying perturbations p0 [ p2 p and r0 [ r2 r,

which leads to

du

dt
5Bẑ2

1

r
$p0 , (4)

where B[2r0g/r is the usual Archimedean buoyancy.

Here, however, we follow the approach taken in DJ03

3200 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 72



and Das (1979) and alternatively decompose the pres-

sure field as

p5 ph1 pnh , (5a)

where

ph[

ð‘
z
dz0 rg , (5b)

so that ph is the local hydrostatic pressure field and pnh is

the local nonhydrostatic pressure field. Plugging this

into (3) yields

r
du

dt
52$pnh2$hph , (6)

where $h 5 ›xx̂1 ›yŷ and we have an exact cancellation

between the gravitational force and 2›zph. The z com-

ponent of (6) is simply

r
dw

dt
52›zpnh , (7)

so the Lagrangian vertical acceleration is given by 1/ r

times the nonhydrostatic vertical pressure gradient force

2›zpnh. [This result also dates back to List and Lozowski

(1970) and Das (1979).] To apply the definitions (1) and

(2),wemust diagnose ›zpnh. This canbe achieved by taking

the divergence of both sides of (6) and invoking anelastic

mass continuity, which yields the Poisson equation

2=2pnh 5$ � [r(u � $)u]1=2
hph , (8)

where =2 is the usual three-dimensional Laplacian and

=2
h [ ›2x 1 ›2y. Here, as in subsequent equations, we write

the Laplacian term with a minus sign so that positive

values on the right-hand side of the Poisson equation tend

to generate positive responses in the solution (in this case,

the solution for pnh). Applying 2›z to (8) yields

2=2(2›zpnh)52›z$ � [r(u � $)u]1 g=2
hr , (9)

where we used the definition (5b) of ph.

We can now combine the diagnostic equation in (9)

with the result in (7) and the definition in (1) to obtain a

Poisson equation for ab:

2=2(rab)5 g=2
hr . (10)

Some remarks on this equation are in order. Note that it

is horizontal density variations, as opposed to more

general thermodynamic variations, that give rise to ab,

which is why we refer to it as a ‘‘buoyant’’ acceleration

rather than amore general ‘‘thermodynamic’’ acceleration.

Also, up to the factor of r, which makes our ab an ac-

celeration rather than a force per volume, (10) is iden-

tical to (6) of DJ03, so we adopt his nomenclature and

alternatively refer to ab as the ‘‘effective buoyancy.’’

Finally, an alternative diagnostic expression for the ef-

fective buoyancy can be obtained via (4); this is the

approach used by most other authors (e.g., Doswell and

Markowski 2004; Xu and Randall 2001; Krueger et al.

1995b), and we will compare and contrast these ap-

proaches in appendix A.

Next, we turn to the diagnosis of ai. Combining (9),

(7), and (2) yields the desired expression:

2=2(rai)52›z$ � [r(u � $)u] . (11)

Note that ai is sourced by the advection of momentum,

which is nothing but inertia, which is why we refer to ai
as an ‘‘inertial’’ acceleration. This quantity has appeared

in the literature many times before, most often as the z

component of a ‘‘dynamic’’ pressure gradient (e.g.,

Markowski and Richardson 2011; Rotunno and Klemp

1985; Klemp and Rotunno 1983). It will be both compu-

tationally and conceptually expedient for us to also con-

sider rai as the vertical component of a pressure gradient.

We will refer to the corresponding pressure field as the

‘‘inertial pressure,’’ denotedpi, andwe give the details of its

definition, interpretation, and computation in appendix B.

Note that the determination of ab and ai via the

Poisson equations (10) and (11) is incomplete without

boundary conditions (BCs). We will be considering an

atmosphere with rigid bottom (z5 0) and top (z5 zt), so

that w5 0 at z5 0 and z5 zt. Equation (7) then implies

2›zpnh 5 0 at heights 0 and zt. These BCs are unchanged

by setting u5 0 or r5 r, and so the definitions (1) and

(2) yield theDirichlet BCs ab 5 ai 5 0 at z5 0 and z5 zt.

Finally, we observe that by (9)–(11), rab 1 rai obeys

the same Poisson equation as 2›zpnh. Furthermore,

both quantities have the same BCs. This tells us that

rab 1 rai 52›zpnh, and (7) then implies

dw

dt
5 ab1 ai . (12)

Equation (12) is the desired decomposition of the

vertical acceleration into buoyant and inertial compo-

nents. Mathematically equivalent forms of (12) can be

found elsewhere in the literature [e.g., Markowski and

Richardson 2011, their (10.15); Krueger et al. 1995b; Xu

and Randall 2001], and the derivation given here closely

follows that given in DJ03 in many respects. The novel

elements are the definitions (1) and (2), which yield

unambiguous boundary conditions for ab and ai and give

them a simple physical interpretation.
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b. Contrasting Archimedean and effective buoyancies

Before describing our experiments and their results,

let us get a feel for how ab works and how it differs from

Archimedean buoyancy (some intuition for ai and pi is

developed in appendix B). From (10), we see that ab is

sourced by the horizontal Laplacian of r, so that buoyant

accelerations tend to be strongest at local extrema of

density (or, more generally, regions of g=2
hr 6¼ 0) rather

than at density anomalies defined relative to an arbitrary

reference value (as with B). This means that ab of a

parcel is defined relative to its immediate surroundings,

so that a very warm parcel surrounded by other warm air

may accelerate less than a moderately warm parcel

surrounded by cool air.

Since (10) is a Poisson equation, effective buoyancy is

nonlocal: that is, localized extrema of density give rise to

accelerations everywhere, even where B5 0. This is, of

course, because any localized acceleration must (by

mass continuity) be accompanied by compensating ac-

celerations in the rest of the atmosphere. These com-

pensating accelerations (see appendix A for their

definition) often oppose the buoyancy field that gives

rise to them (Markowski and Richardson 2011; Houze

1994), yielding a reduced net acceleration for air with

significant B. For isolated regions of significant buoy-

ancy, we thus expect that jabj, jBj.
These aspects of ab are illustrated in Fig. 1, which

shows x–z cross sections of B and ab for two Gaussian

bubbles of the form

r5 r(z)1 dr exp[2(r/r0)
n 2 (z/z0)

n]

for n 5 2 and 4. Here, r0 5 1 km, z0 5 500m, and

dr5 r(0)/300, where r(z) is taken from our RCE

simulations described below. We calculate B with re-

spect to the horizontal average of r rather than r; the

fact that such a choice is required, yet somewhat

FIG. 1. An x–z cross section of (center) B and (right) ab for Gaussian (n5 2) and hyper-Gaussian (n5 4) density perturbations of the

form exp[2(r/r0)
n 2 (z/z0)

n]. (left) The shape of the density perturbations at the surface is shown, and the precise form is given in the text.

Note that ab is only a fraction of B throughout most of both bubbles and that ab is nonzero above z; 1000m, where B’ 0. Also note the

double peak in ab for the broad n5 4 distribution.
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arbitrary, is yet another shortcoming ofB (Doswell and

Markowski 2004).

Perhaps the most striking feature (for both values of

n) of Fig. 1 is the degree to which jabj, jBj, requiring a

rather severe stretching of the color bar to render

features of both fields visible. Another interesting

feature of Fig. 1, particularly for n5 4, is that for

z*1000m, ab 6¼ 0 even though B’ 0. As discussed

above, this is because ab not only accelerates the bubble but

also sets up the accompanying environmental circulation.

Finally, for n5 4, one can calculate that =2
hr is a

maximum near the ‘‘shoulder’’ of the density distribu-

tion at r’ 500m, and Fig. 1 shows a corresponding

maximum there in the ab field as well. This is to be

contrasted with theB field, where themaximum is found

at r5 0, where r itself has a minimum. Again, this is

because net thermodynamic accelerations are a function

of how buoyant a parcel is relative to its immediate

surroundings, and so when the peak of the density dis-

tribution is too broad, the parcels there feel less accel-

eration than their counterparts at the shoulder of the

distribution. Thus, the spatial distribution of ab can in-

deed differ from that of B; we will see even more dra-

matic examples of this in the next section.

3. RCE simulations

With a preliminary understanding of ab in hand, we

can proceed to investigate whether ab or ai dominates

the triggering of deep convection by cold pools in CRM

simulations of RCE. This section describes the numeri-

cal model used as well as our specific case setup.We also

briefly describe our calculation of ab and ai; this is dis-

cussed in greater detail in appendix B.

Our cloud-resolving simulations were performed with

Das Atmosphärische Modell (DAM) (Romps 2008).

DAM is a three-dimensional (3D), fully compressible,

nonhydrostatic CRM, which employs the six-class Lin–

Lord–Krueger microphysics scheme (Lin et al. 1983;

Lord et al. 1984; Krueger et al. 1995a). Radiation is in-

teractive and is calculated using the Rapid Radiative

TransferModel (Mlawer et al. 1997).We rely on implicit

LES (Margolin et al. 2006) for subgrid-scale transport,

and thus no explicit subgrid-scale turbulence scheme

is used.

Our RCE simulations ran on a square doubly periodic

domain of horizontal dimension L5 51:2 km, with a

horizontal resolution of dx5 100m. The vertical grid

stretches smoothly from 50-m resolution below 1200- to

100-m resolution above, up to the model top at 30 km.

We ran with a fixed sea surface temperature of 300K

and calculated surface heat and moisture fluxes using a

bulk aerodynamic formula.

For a first diagnosis of ab and ai in RCE, we spun up

the model for 60 days on an L 5 12-km, dx 5 200-m

domain, then used the vertical profiles from this run to

initialize a 13-day run on an L 5 51-km, dx 5 200-m

domain. This runwas then restarted with dx5 100m and

run for one more day to iron out any artifacts from

changing the resolution. All data in the next section are

from the end of this run.

We diagnose ab directly from CRM output via the

Poisson equation (10). We compute ai slightly indirectly

by first computing the inertial pressure pi from CRM

output via (B2) and then using ai 52(›zpi)/r. We solve

both Poisson equations by Fourier transforming in the

horizontal, which yields systems of algebraic equations

that can be solved by inverting a tridiagonal matrix. As

discussed in section 2a, the fact that w[ 0 at model top

and bottom yields Dirichlet boundary conditions for ab
and Neumann boundary conditions for pi. The im-

plementation of the latter is somewhat subtle, however,

and requires some care; see appendix B for details.

4. RCE results

Plan views of the vertical velocity w at z5 300m as

well as the vertical accelerations B, ai, and ab at

z5 150m for a CRM snapshot are given in Fig. 2. Cold

pools are clearly visible in the B field, and incipient

convection at the cold-pool gust fronts is evident in thew

field. Comparison of ai and ab suggests that this incipient

convection is due primarily to ai rather than ab. Note the

much reduced magnitude and differing spatial scales of

ab relative to B, again requiring a severely stretched

color bar; in this circumstance, B is not even a first ap-

proximation for ab. This drastic difference between ab
and B is a result of the extreme aspect ratio of the cold

pools as well as their proximity to the ground, where an

ab 5 0 boundary condition is enforced. Further work is

needed to separately quantify these two effects and

delineate the density distribution regimes over which B

can be used as a proxy for ab.

To further investigate the dominance of ai over ab, we

take an y–z transect through a particular cold-pool gust

front from Fig. 2 and plot various quantities for this

transect in Fig. 3. (This particular gust front is marked

with a black circle in the w plot of Fig. 2.) We see a

vigorous southward-moving cold pool with a gust front

at y’ 38 km as well as a nascent plume (w. 1ms21) just

above at around z5 300m. The warm, moist air feeding

this plume from below is visible in the B, u, qy, and ue
fields at (y, z) ’ (38 km, 150m), and the gust front and

plume indeed exhibit anomalously high ue, as noted by

T01. Despite such thermodynamic enhancement, how-

ever, the plume’s near-surface acceleration is strongly
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dominated by ai. Even when plotted on a stretched color

scale, its ab is barely discernible and is much reduced

relative to its Archimedean buoyancy, consistent with

our results from section 2b.

To quantitatively test the hypothesis that the ai spike is

responsible for the nascent plume, we check if w of the

nascent plume at z5 300m, which is about 2.5ms21, is

equal to
ffiffiffiffiffiffiffiffiffi
2aih

p
where h is the height of the ai spike at the

gust front. Taking ai ’ 0:02m s22 and h’ 200m givesffiffiffiffiffiffiffiffiffi
2aih

p
5 2:8m s21, which is consistent with the actual w.

We analyzed several other cold pools and came to

similar conclusions. Still, a more comprehensive and

objective test of the dominance of ai is needed. To that

end, we identify ‘‘active’’ columns [defined here to be

those (x, y) with w(x, y, z5 300m). 0:5m s21], and for

these regress rai and rab evaluated at (x1 dx, y1
dy, z), for various dx, dy, and z, against w2(x, y, 300m).

This yields regression coefficients rb(dx, dy, z) and

ri(dx, dy, z) which are least squares fits to

ab(x1 dx, y1 dy, z)5 rb(dx, dy, z) � w2(x, y, 300m)1Cb,

ai(x1 dx, y1 dy, z)5 ri(dx, dy, z) � w2(x, y, 300m)1Ci ,

(13)

where the intercepts Cb and Ci are negligible and ig-

nored henceforth. We use w2 rather than w because (by

the work-energy theorem) a linear relationship with the

forces is expected only for w2. We regress the forces on

w2, rather than the other way around, because we want

the regression coefficient to be directly proportional,

rather than inversely proportional, to the magnitude of

the forces. Maps of rb and ri as a function of (dx, dy)

and at various heights z are shown in Fig. 4. [The units

and order of magnitude of the coefficients are given

by r/2h5 (1:2 kgm3)/(23 200m)5 0:003 kgm4.] These

maps show clearly and objectively the dominance of ai
over ab in generating new mass flux in the boundary

layer and constitute our main numerical result.

FIG. 2. Plot of B, w, ab, and ai in the boundary layer for a CRM snapshot. Note that incipient convection

(w * 1m s21) is almost entirely collocated with the cold-pool boundaries visible in the B field and that the vertical

acceleration there appears strongly dominated by ai. Note the stretched color bar for all accelerations. The black

circle in the w plot marks the gust front whose transect is plotted in Fig. 3.
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5. Why does ai dominate?

The previous section presented anecdotal as well as

systematic evidence that ai dominates over ab in trig-

gering new low-level mass flux in a simulation of deeply

convecting RCE. It remains, however, to gain some in-

sight as to why this should be. In this section we will

estimate the ratio of ai to ab at a cold-pool gust front

by estimating the ratio of the relevant source terms in

their respective Poisson equations. We justify this

approach by noting that variations in ab and ai at the gust

front occur over the same length scales and so

=2ai/=
2ab ’ ai/ab.

First consider the source term Sai [2›z$ � [r(u � $)u]
for ai in (11). This can be rewritten as

Sa
i
5 ›z[r(›jui)(›iuj)2 rw2›2z lnr] . (14)

To analyze this, note that the scale of r variations is

much larger than those for the velocities, so we can ne-

glect derivatives of r. This leaves us with

Sa
i
5 r›z[(›jui)(›iuj)] . (15)

Let us evaluate this at a gust-front boundary, where U

is a typical horizontal velocity of the front, W is a

typical vertical velocity of a triggered updraft, h is a

typical height of the front, and L is the length over

which u and B transition from their cold-pool values to

their ambient values. (From the surface level in Fig. 3,

FIG. 3. Plot of y, w, B, u, qy , ue, ai, ab, and ab 1 ai for cold-pool transect. The nascent plume at (x, y) 5 (38 km, 150m), visible in the w

field, lies just above the gust front evident in the u field. The plume has anomalously high u, qy, andB but is nonetheless triggered primarily

by ai. Note again the drastic differences in the ab and B fields.
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this is evidently the grid spacing dx, though we will see

that our argument is resolution independent.) Then

every i5 1 or 2 in (15) yields a factor ofU/L, and every

factor of i5 3 yields a factor of W/h, which equals

U/L by continuity. The same is true for j. Also, ›z
contributes a factor of 1/h, and so we can estimate

(15) as

Sa
i

’ 9r
U2

L2h
.

Similarly, the source term for ab is given by

Sa
b
[ g=2

hr’ 2g
r0

L2
,

where r0 is a characteristic density anomaly for a cold

pool. Taking the ratio of our expressions for Sai and Sab
gives

Sa
i

Sa
b

’
9U2

2Bh
, (16)

where B is a characteristic magnitude of Archimedean

buoyancy for the cold pool. To evaluate (16), we use the

empirical observation (Hacker et al. 1996) that for a

lock–release density current, the ‘‘total depth’’ Froude

number (FrH [U/
ffiffiffiffiffiffiffiffiffiffi
B0H

p
) is roughly equal to 1/2,

independent of time and H.1 Here H is a characteristic

height for the negatively buoyant downdraft that

spawned the cold pool, and B0 is the magnitude of the

cold pool’s initial buoyancy (typicallyB0 * B). Plugging

U2 5 0:5B0H into (16) gives

Sa
i

Sa
b

’
9

4

B0H

Bh
. 1. (17)

This is our main theoretical result. Taking typical

values of H5 800m, h5 200m, B0 5 0:02m s22, and

B5 0:01m s22 gives a ratio of about 18, implying that, at

the gust fronts, ai is larger than ab by about an order of

magnitude. This corresponds roughly to what we see in

Figs. 2 and 3. A cartoon of this result, emphasizing the

ratio ofH to h as a determining factor in the dominance

of ai over ab, is given in Fig. 5.

6. Shallow-to-deep simulation

Given that we have identified ai as the dominant force

component in the generation of boundary layer mass

FIG. 4. Regression coefficients ri and rb (gm
24) as defined in (13), plotted as a function of dx and dy, respectively, for various z. This more

objective and comprehensive test again shows that ai dominates over ab.

1More specifically, if the initial slug has a radius R0, then FrH is

roughly constant until the gust front reaches 8–10R0, at which

point the cold pools in our simulation have transitioned to

warm pools.
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flux in RCE, it is of interest to ask whether there are

other settings in which ab, rather than ai, might dominate.

One might expect that for shallow nonprecipitating con-

vection, the absence of cold pools would mean that the

triggering of convection is primarily buoyant in nature.

To test this, we run a shallow-to-deep CRM simula-

tion similar to that of Kuang and Bretherton (2006),

where we use the same model domain and grid spacing

as for our RCE simulation above but initialize with a

thermodynamic profile based on observations from the

Barbados Oceanography and Meteorology Experiment

(BOMEX). For heights between 0 and 3000m we use

the u and qy profiles given in the CRM intercomparison

study of this case in Siebesma et al. (2003). We then

simply (and somewhat crudely) extend the u profile

above 3000m by linearly interpolating (z, u) to a tro-

popause at (14 000m, 350K) and then to the model top

at (30 000m, 800K). We similarly extend the qy profile

via relative humidity (RH) by interpolating (z, RH) to

(14 000m, 0:5) and then to (30 000m, 0). These values

roughly approximate those found in our RCE simula-

tions. We fix the latent heat flux at 150Wm22 and sen-

sible heat flux at 10Wm22, in accordance with Siebesma

et al. (2003). Note the contrast with other studies of the

shallow-to-deep transition, such as Kuang and Bretherton

(2006) and Böing et al. (2012), where the transition is

forced by time-dependent surface fluxes. Here, we are

less interested in a realistic transition between shallow

and deep convection as we are in contrasting their

convective triggering mechanisms, and we deem this

simple simulation sufficient for that purpose.

We run this simulation for 2 days, saving 3-hourly

snapshots. For each snapshot, we calculate rb and ri as in

(13) but set dx5 dy5 0 for clarity.We thus get one value

of rb and ri at each height for each snapshot, and time

series of these (along with domain-mean precipitation)

are presented in Fig. 6. Indeed, we see that ab dominates

while precipitation is negligible and that ai takes over as

precipitation sets in; this confirms our expectation and

provides a clear hydrodynamical distinction between

mass flux generation in the two regimes.

7. Implications

We have used a carefully chosen formulation of the

anelastic equations of motion to decompose vertical

accelerations into inertial and buoyant components and

have used the resulting decomposition to analyze the

triggering of low-level mass flux by cold-pool gust fronts.

This can be seen as a first step toward answering the

question of how cloud-base mass flux is generated in the

boundary layer of an atmosphere in deeply convecting

RCE. Along the way, we have also developed some in-

tuition for the inertial and buoyant accelerations and

have addressed some ancillary questions that arise in

their interpretation and computation.

The notion of effective buoyancy, though not new, has

received relatively little attention. The physics that it

embodies is well known, in that it is widely acknowl-

edged in the literature that buoyant accelerations of

parcels are reduced by back reaction from the environ-

ment and that this effect depends on the horizontal ex-

tent of the parcel, but these effects are rarely computed

explicitly. Furthermore, widely used diagnostic quanti-

ties such as CAPE and CIN, which play central roles in

various convective parameterizations (e.g., Zhang and

McFarlane 1995; Bretherton et al. 2004), are based on

easily calculatedArchimedean buoyancy, rather than on

the complete buoyant force.2 Since the results presented

here (and in particular Figs. 1 and 2) suggest that Ar-

chimedean buoyancy can be highly inadequate in cap-

turing buoyant acceleration, both in magnitude and

spatial distribution, care must be taken in the quantita-

tive application of such diagnostics. If a parcel’s CIN, for

instance, is a poor estimate of the negative buoyant ac-

celeration it experiences as it makes its way to cloud

base, then there may be little theoretical justification for

the CIN–TKE mass flux closures employed in, for ex-

ample,Mapes (2000) andBretherton et al. (2004). There

is thus a need for a simple yet quantitatively reliable way

to estimate the effective buoyancy of a parcel given

some additional datum about its spatial dimensions and

proximity to the ground.

FIG. 5. Cartoon depicting the dominance of ai over ab as resulting

primarily from the ratio of H to h, as in (17).

2 As computed via ab, or by adding in the buoyancy perturbation

pressure force 2›zp
0
b, as per (A1) below.
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The other component of vertical force, the inertial

pressure gradient (rai 52›zpi), seems to be more fa-

miliar than effective buoyancy, having in particular

played a key role in the analysis of severe storms and

tornadoes (e.g., Rotunno and Klemp 1985; Klemp and

Rotunno 1983; Markowski and Richardson 2011). De-

spite this exposure though, pi remains slightly enigmatic.

There seems to be little discussion in the literature of pi
as an enforcer of mass continuity in the face of inertial

motions and how this implies that strain and vorticity

generate pi disturbances of opposing sign. Further-

more, the calculation of pi via (B2) raises issues

of boundary-condition implementation and finite-

difference interpolation that often go unmentioned

but actually require rather exquisite care. We have

endeavored to fill these gaps in the interpretation and

calculation of pi in appendix B.

Finally, our result that the inertial acceleration ai
dominates the low-level triggering of new mass flux

provides a stepping stone to a more complete picture of

mass flux generation in the boundary layer. Though we

have not made a precise connection between the low-

level mass flux investigated here and cloud-base mass

flux, a positive correlation is to be expected, and thus our

results lend preliminary support to convective parame-

terizations in which the inertial triggering of mass flux at

cold-pool gust fronts takes center stage, as in Rio

et al. (2013).

Of course, many details remain to be filled in. For

instance, the origins of the anomalous moisture at the

gust front remain uncertain. Surface fluxes and en-

trainment of environmental air are potential sources of

both heat and moisture for the gust front, which may

have already been significantly premoistened by evap-

orating precipitation, but a quantification of these vari-

ous sources is still lacking. Also, although ai dominates

over ab in the lower boundary layer, the transect in Fig. 3

(as well as other transects that we inspected) suggest that

the force balancemay shift as the plume rises and that ab
may play a role in shepherding nascent plumes through

the middle boundary layer and up to their lifting

condensation levels. Quantifying this role would be

FIG. 6. Time series of ri and rb, computed as in (13) for various z but with dx5 dy5 0, along with precipitation time

series, for the shallow-to-deep simulation. Note that ab dominates before precipitation sets in, at which point ai
takes over.
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necessary to complete the picture of cloud-base mass

flux generation.

Apart from the generation of deep convective mass

flux, there are other problems that might be fruitfully

analyzed with the approaches taken here. It could be

helpful to attempt a scaling estimate for ai/ab as in (17),

but for shallow convection, where turbulent motions

instead of cold pools are responsible for generating the

heterogeneity in density and wind that generate ab and

ai. Also, applying the force decomposition in (12) to

convection in the free troposphere could further refine

our picture of the vertical momentum budget of ther-

mals, as recently studied in, for example, Wang and

Zhang (2014), Sherwood et al. (2013), and de Roode

et al. (2012).

Finally, we note that as we were revising this paper, a

similar study was published that also examines the

relative influence of thermodynamic and mechanic

properties of cold pools upon convective triggering

(Torri et al. 2015). Similar to this study, those authors

also found that mechanical forces dominate over

thermodynamic ones in triggering low-level mass flux.

Furthermore, they employed a Lagrangian particle

dispersion, which allowed them to quantify the in-

fluence of cold-pool thermodynamics in reducing

particles’ lifting condensation levels. They also introduced

a novel algorithm for tracking the lifetimes of cold pools

and the residence times of particles within them, pro-

viding new insights into the origins of mass flux triggered

by cold pools.
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APPENDIX A

Comparison of Two Approaches to Effective
Buoyancy

Solving (10) is not the only way to obtain the buoyant

acceleration. One can use the momentum equation [(4)]

and take its divergence to obtain a Poisson equation for

p0, which has2r›zB as one of its source terms. One can

then define a ‘‘buoyancy perturbation pressure’’ p0b as

the solution to 2=2p0b 52r›zB [modulo ambiguous

boundary conditions; Markowski and Richardson (2011,

p. 29)], and it can be shown (DJ03) that

ab 5B2 (›zp
0
b)/r. (A1)

Thus, one can compute ab by computing B, solving

2=2p0b 52r›zB, and then summing. This approach has

been taken by other authors (e.g., Xu and Randall 2001;

Krueger et al. 1995a). Though the two approaches must

yield the same result, they lend themselves to different

interpretations. The B2 (›zp
0
b)/r expression says that

Archimedean buoyancy drives buoyant accelerations

and 2(›zp
0
b)/r gives the environmental response. To

analogously interpret ab as computed via (10), we

proceed as follows. We define a ‘‘buoyancy pressure’’

pb (not to be confused with the buoyancy perturbation

pressure p0b) as the pnh field resulting from zeroing out

the wind fields (i.e., pb [ pnhju50). It follows from (8)

that

2=2pb5=2
hph , (A2)

and so pb arises to enforce mass continuity in the face of

horizontal hydrostatic pressure forces 2$hph. Further-

more, (19) implies ab 52›zpb/r, and hence the buoyant

acceleration ab can be seen as the vertical acceleration

needed to compensate for horizontal motions driven by

the hydrostatic pressure gradient, as in the stack (or

‘‘chimney’’) effect.

We thus have two ways of thinking about the buoyant

force. One significant disadvantage of the B2 (›zp
0
b)/r

approach is that it treats B as primary, even though B

suffers significant arbitrariness because of its de-

pendence on an arbitrary reference state [as pointed out

in section 2b and emphasized by Doswell and

Markowski (2004)]. The ab approach does not suffer this

ambiguity and also lends itself to a straightforward

derivation of (17).

APPENDIX B

Defining, Interpreting, and Calculating the Inertial
Pressure

a. Defining and interpreting pi

We mentioned in section 2a that ai can be viewed as

the z component of the gradient of an associated pres-

sure, the inertial pressure pi, defined here as

pi[ pnhjr5r . (B1)

Applying this definition to (6) and taking its divergence

yields the following Poisson equation for pi:
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2=2pi 5$ � [r(u � $)u] . (B2)

Equation (7) yields Neumann boundary conditions

(BCs) ›zpi 5 0 at model top and bottom. Applying 2›z
to both sides of this equation, comparing with (11), and

noting that Neumann BCs for pi imply Dirichlet BCs for

›zpi show that indeed rai 52›zpi.

Equation (B2) can be interpreted as enforcing the

cancellation of the tendency of mass divergence gener-

ated by the inertial pressure with that generated by ad-

vection, in order to maintain anelastic continuity. In

other words, the pi field produces whatever force is

needed to ensure (anelastic) mass continuity in the face

of the divergent tendencies generated by fluid inertia.

To gain further intuition for pi, we refer to Bradshaw

and Koh (1981), who showed that the source term Spi ,

which we define to be the right-hand side of (B2), can be

written (neglecting r variations) as

Sp
i
5 r

�
kek22 1

2
kvk2

�
, (B3)

where e is the strain tensor with components

eij 5 1/2(›iuj 1 ›jui), v is the vorticity vector with com-

ponents vi 5 �ijk›juk, and the norm squared k�k2 of a

vector or matrix denotes the sum of the squares of the

components. Thus, strain is a source of positive pressure

and vorticity a source of negative pressure.

We can understand this as follows. First consider a 2D

velocity field u, vanishing at infinity, that, to first order

around the origin, is given by the solid-body rotation

field u5 (2y, x) (Fig. B1a). If u is allowed to evolve

solely under its own inertia, then, near the origin,

›tu52(u � $)u5 (x, y) .

In other words, u will develop a component pointing

radially outward from the origin (Fig. B1b) as a conse-

quence of the familiar centrifugal ‘‘force.’’ This advec-

tive tendency will cause a divergence of mass, and since

it is the job of pi to generate a convergence of mass to

counteract this, pi must have a low at the origin. Thus,

vorticity must be a source of negative pi.

Next, consider another u field that vanishes at infinity

but is given to first order at the origin by the irrotational

field u5 (2x, y) (Fig. B1c). This field converges along

the x axis and diverges along the y axis and thus has

nonzero strain at the origin. If u is allowed to evolve

solely under its own inertia, then, near the origin,

›tu52(u � $)u5 (2x,2y) .

In other words, u will develop a component pointing

radially inward toward the origin (Fig. B1d). This

advective tendency will cause a convergence of mass,

and since it is the job of pi to generate a divergence of

mass to counteract this, pi must have a high at the origin.

Thus, strain must be a source of positive pi.

b. Calculating pi

When calculating pi, it is computationally expedient

to rewrite Spi yet again to obtain the Poisson equation

2=2pi 5 r(›jui)(›iuj)2w2›2z lnr . (B4)

[The z derivative of this is just the right-hand side of

(14).] We solve (B4) by first Fourier transforming from

(x, y) to k5 (kx, ky) in the horizontal, periodic di-

mensions, which yields a set of algebraic equations for

each k which are coupled only in z. This system can be

written in terms of a k-dependent tridiagonal matrix,

which is (in general) easily inverted, whereupon we

Fourier transform back and are done.

One issue that deserves further comment is that of the

boundary conditions at model top (z5 zt) and model bot-

tom (z5 0). As noted above, pi obeys the Neumann BCs

›zpi(zt)5 ›zpi(0)5 0. (B5)

The rub is that these double Neumann BCs do not

uniquely specify pi but only determine it up to a con-

stant; thus, these BCs are degenerate. This manifests

computationally in a noninvertible tridiagonal matrix

for k5 0—that is, the constant Fourier component pi(z)

(denoting horizontal averages with an overbar). We can

thus keep our Neumann BCs for k 6¼ 0 as well as for pi at

model bottom and then specify our constant and remove

the degeneracy by imposing the Dirichlet BC pi(zt)5 0

at model top. This, however, seems potentially in-

consistent with (B5), which implies ›zpi(zt)5 0 as well.

Fortunately, the Poisson equation carries an integral

constraint that saves the day. Integrating (B2) over the

entire domain, noting that the boundary of the domain

consists of just the model top and bottom, and applying

the divergence theorem yields

2

ðð
dx dy ›zpij

z
t

0 5

ðð
dx dy r(u � $)wjzt0 . (B6)

The fact that w[ 0 at z5 0 and z5 zt implies that the

right-hand side of (B6) is zero. At the same time, one can

recognize the left-hand side as ›zpi(zb)2 ›zpi(zt) times a

constant. This yields the constraint

›zpi(0)5 ›zpi(zt) . (B7)

Thus, the Neumann BC at model bottom plus the

constraint (B6) implies that the Neumann BC holds
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at model top as well, in addition to our Dirichlet

BC there.

As an aside, we should note here that numerically,

the summed source term r(›jui)(›iuj) on the right-

hand side of (B4) must be quite carefully computed

in order for the constraint (B7) to be obeyed. In par-

ticular, on an Arakawa C grid (Arakawa and Lamb

1977) the terms with different (i, j) live at different

points of the grid cell, but for a given (i, j) each factor

›jui and ›iuj lives on the same point of the grid cell. To

compute Spi , one must interpolate each term to a

common point before summing, but it is imperative

to only perform this interpolation after multiplying

›jui and ›iuj together. We found that interpolating

before multiplying yielded a pi field that did not

obey (B7).

Returning to analytics, we observe that one can, in

fact, go beyond the constraint in (B7) and obtain an

explicit expression for pi. We begin with the anelastic

equation of motion

r
dw

dt
5 rab2 ›zpi (B8)

and take a horizontal average over our domain with area

A. We evaluate r ab by applying a horizontal average

to (10), which yields 2›2z(r ab)5 g=2
hr5 0. This, along

with the BCs ab(0)5 ab(zt)5 0, implies ab 5 0.

Meanwhile, mass continuity implies r›w/›t5 0. Ap-

plying these results to the horizontal average of (B8)

yields

FIG. B1. Idealized vector fields and their advective tendencies. (a) A pure rotational flow and

(b) its divergent advective tendency. (c) A pure (irrotational) strain flow and (d) its convergent

advective tendency. The inertial pressure balances these tendencies by generating a low (high)

at the origin in the case of pure rotation (strain).
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2›zpi 5
1

A

ðð
dx dy r(u � $)w

5
1

A

ðð
dx dy ›i(ru

iw)5 ›zrw
2 .

Integrating down from model top then shows that

pi 52rw2 . (B9)

We can interpret this equation as follows. The quantity

rw2 is simply the domain-averaged flux of vertical mo-

mentum rw. The convergence (2›zrw2) of this flux is a

force—namely, the rate at which inertial motions gen-

erate rw. Continuity dictates that rw[ 0, however, and

so (B9) just says that pi provides the force necessary to

ensure this, in consonance with our discussion in the last

section.

As a final note, (B9) and the Dirichlet BCs on w show

that pi obeys both Neumann and Dirichlet BCs, and so

either (or a mix) may be used in practice. Also, the re-

lation in (B9) serves as a useful diagnostic constraint

against which one may check their calculation of pi.
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