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ABSTRACT

Two common numerical techniques for integrating reversible moist processes in atmospheric flows are

investigated in the context of solving the fully compressible Euler equations. The first is a one-step, coupled

technique based on using appropriate invariant variables such that terms resulting from phase change are

eliminated in the governing equations. In the second approach, which is a two-step scheme, separate transport

equations for liquid water and water vapor are used, and no conversion between water vapor and liquid water

is allowed in the first step, while in the second step a saturation adjustment procedure is performed that

correctly allocates the water into its two phases based on the Clausius–Clapeyron formula. The numerical

techniques described are first validated by comparing to a well-established benchmark problem. Particular

attention is then paid to the effect of changing the time scale at which the moist variables are adjusted to the

saturation requirements in two different variations of the two-step scheme. This study is motivated by the fact

that when acoustic modes are integrated separately in time (neglecting phase change related phenomena), or

when soundproof equations are integrated, the time scale for imposing saturation adjustment is typically

much larger than the numerical one related to the acoustics.

1. Introduction

A key issue in moist atmospheric flow modeling in-

volves the interplay between the dynamics of the flow

and the thermodynamics related to reversible and irre-

versible moist processes. In this paper we focus on re-

versible processes (i.e., water phase changes) using an

exact Clausius–Clapeyron formula for moist thermo-

dynamics, and considering the effects of the specific

heats of water and the temperature dependency of the

latent heat (as in Satoh 2003; Romps 2008). Specifically,

we want to characterize the impact of modifying the

time scale at which the moist thermodynamics is ad-

justed to the saturation requirements.

Atmospheric flow models are often cast in terms of

the potential temperature andExner function. Formoist

atmospheres an equivalent potential temperature is

typically used as a prognostic variable (see, e.g., Klemp

and Wilhelmson 1978). Alternatively, Ooyama (1990),

for example, writes the equations of motion in terms of

conserved variables, while other thermodynamic vari-

ables such as pressure, are recovered diagnostically. This

formulation was later extended to include irreversible

thermodynamic processes (like precipitation) in Ooyama

(2001), and inspired the development of some other

conservative schemes considering both primitive variables

(e.g., Satoh 2002, 2003; Satoh et al. 2008) and a potential

temperature–type of formalism (e.g., Klemp et al. 2007).

We follow here the approach of Ooyama (1990) in

formulating the problem based on the separation of

dynamics and thermodynamics. For the dynamics, we

explicitly evolve the compressible Euler equations with

time steps dictated by the acoustic Courant–Friedrichs–

Lewy (CFL) condition. This allows us to focus on issues

of how to couple the moist thermodynamic processes

with the dynamics. In particular we can modify the time

step associated with the moist thermodynamic adjust-

ments without changing either the formulation of or the

numerical solution procedure for the dynamics. In the
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same spirit, we write the Euler equations in conservation

law form (similar to Satoh 2003), which eases the in-

clusion of time-varying thermodynamic parameters for

moist air.

Within this formulation, we consider two numerical

treatments of moist microphysics (see, e.g., Grabowski

and Smolarkiewicz 1990). In the first approach, often

referred to as the invariant (conservative) variables ap-

proach, the equations of motion are defined using

appropriate invariant variables such that terms result-

ing from phase change are eliminated in the governing

equations, while the remaining variables are diagnos-

tically recovered (cf. Hauf and Höller 1987). [This is the
case, for instance, in Ooyama (1990, 2001) for total water

content and entropy.] In the second approach, which is

more common, the equations are again defined using the

conservative variable for moist energy, but in this case

separate transport equations for liquid water and water

vapor are used. The essence of the two-step scheme is

that the dynamics are evolved in the first step without

allowing any conversion between water vapor and liquid

water. In the second step a saturation adjustment pro-

cedure is performed that correctly allocates the water

into its two phases based on the Clausius–Clapeyron

formula (cf. Soong and Ogura 1973). Similar two-step

schemes have been considered, for instance, in Klemp

and Wilhelmson (1978) and Satoh (2003).

We explore two variants of the two-step scheme. In

the first variant, even though liquid water and water

vapor are advancedwithout accounting for phase change,

a saturation adjustment procedure is used to diagnose

thermodynamic variables such as pressure and the spe-

cific heat of moist air that are used to advance the dy-

namics during the first step. In the second variant, the

dynamics is evolved without any adjustment of the water

variables or the moist thermodynamics.

Two different questions concerning the time scale for

saturation adjustment can be addressed in this way.

Using the first variant, we assess the impact of advancing

liquid water and water vapor without phase change

terms, but with moist dynamics equivalent to that com-

puted with the one-step coupled scheme. Using the

second variant, we investigate the impact of completely

separating the saturation adjustment from the dynamics.

2. Governing equations

We begin by writing the fully compressible equations

of motion expressing conservation of mass, momentum,

and energy in a constant gravitational field:

›r

›t
1$ � (ru)5 0, (1)

›(ru)

›t
1$ � (ruu)1$p52rgêz , (2)

›(rE)

›t
1$ � (rEu1 pu)52rg(u � êz) , (3)

in which we neglect Coriolis forces and viscous terms,

as well as the influence of thermal conduction and ra-

diation. Here r is the total density and u is the velocity.

The energy E is defined as the sum of internal plus ki-

netic energies, and the pressure p is defined by an

equation of state (EOS). We include gravitational ac-

celeration given by g52gêz, where êz is the unit vector

in the vertical direction.

We then follow the formalism as in Romps (2008) for

moist atmospheres with the additional simplification

that at any grid point all phases have the same temper-

ature and velocity. Here we also ignore ice-phase micro-

physics, precipitation fallout, and subgrid-scale turbulence.

We consider an atmosphere with three components—dry

air, water vapor, and liquid water—and treat moist air as

an ideal mixture with the water phases in thermody-

namic equilibrium, so that only reversible processes are

taken into account. Denoting by qa, qy, and ql the mass

fraction of dry air, water vapor, and liquid water, re-

spectively, we write

›(rqa)

›t
1$ � (rqau)5 0, (4)

›(rqy)

›t
1$ � (rqyu)5 ey , (5)

›(rql)

›t
1$ � (rqlu)52ey . (6)

Since r is the total density (i.e., it includes dry air, water

vapor and liquid water), we have that qa 1 qy 1 ql 5 1.

The evaporation rate ey has dimensions of mass per

volume per time; negative values of ey correspond to

condensation. Introducing the mass fraction of total

water, qw 5 qy 1 ql, Eqs. (5)–(6) can be also recast as

›(rqw)

›t
1$ � (rqwu)5 0. (7)

The energy E in Eq. (3) is defined in this work as

E5 ê1
u � u
2

,

where ê stands for the specific internal energy of moist

air. The constant-volume specific heat of moist air is

given by

cym 5 qacya1 qycyy 1qlcyl ,
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with constant specific heats at constant volume: cya, cyy,

and cyl, for the three components: air, water vapor, and

liquid water, respectively. The internal energy of moist

air is thus defined as

ê5 cym(T2Ttrip)1 qyE0y , (8)

where Ttrip is the triple-point temperature, and E0y is

the specific internal energy of water vapor at the triple

point. [Following Romps (2008), we neglect the contri-

bution of the specific internal energy of dry air at the

triple point in the definition of ê.] Satoh (2003) consid-

ered the same formulation for the internal energy of

moist air in Eq. (8), but included potential energy in the

definition of total energy. We note that the definition

of E, and in particular of ê, yields an energy equation in

Eq. (3) with no source terms related to phase changes. In

the case of a potential temperature–type of formalism,

this can be also achieved by defining a liquid (or ice

liquid) potential temperature as originally introduced by

Betts (1973), Tripoli and Cotton (1981), and considered,

for instance, in Tripoli (1992), Walko et al. (2000), Jiang

and Cotton (2000), and Walko and Avissar (2008).

An equation of state for moist air must be provided to

close the system. For the sake of illustration, we consider

in this study a standard approach adopted in atmospheric

flows in which dry air and water vapor are treated as

ideal gases (see, e.g., Ooyama 1990; Satoh 2003; Klemp

et al. 2007). The partial pressures of dry air and water

vapor are then given by pa 5 rqaRaT and py 5 rqyRyT,

where Ra and Ry are the specific gas constants for dry air

and water vapor, respectively. Denoting by Ma and My

the molar masses of dry air and water, respectively, we

know that Ra 5 R/Ma and Ry 5 R/My, where R is the

universal gas constant for ideal gases. If we define the

specific gas constant of moist air as

Rm 5 qaRa1 qyRy 5

�
qa
Ma

1
qy
My

�
R ,

then the sum of the partial pressures defines the total

pressure of a parcel:

p5 pa1 py 5 rRmT . (9)

Additionally, the specific heat capacities at constant

pressure can be defined as

cpa 5 cya1Ra, cpy 5 cyy 1Ry, cpm 5 cym 1Rm ,

for dry air, water vapor, and moist air, respectively. A

common approximation in cloudmodels is to neglect the

specific heats of water vapor and liquid water [see, e.g.,

Bryan and Fritsch (2002) for a study and discussion on

this topic]. Here we consider specific heats for all three

phases.

Now, the saturation vapor pressure with respect to

liquid water py* is defined by the following Clausius–

Clapeyron relation:

py*(T)5 ptrip

 
T

Ttrip

!a
y

exp

"
by

 
1

Ttrip

2
1

T

!#
, (10)

with constants ay and by, given, for instance, by

ay 5
cpy 2 cyl

Ry

, by 5
E0y 2 (cyy 2 cyl)Ttrip

Ry

, (11)

as in Romps (2008). The saturated mass fraction of

water vapor qy* can be then computed from the EOS,

given in this case by

qy*(r,T)5
py*

rRyT
. (12)

Following Ooyama (1990) and Satoh (2003), we assume

that air parcels cannot be supersaturated, and thus water

vapor mass fraction, qy, cannot exceed its saturated

value qy*.

3. Numerical methodology

In what follows we describe the numerical method-

ology we use to solve Eqs. (1)–(6) for moist flows. The

detailed numerics for dry flow are as described in

Almgren et al. (2010), which describes the CASTRO

code, a multicomponent compressible flow solver. Our

attention here will be mainly focused on the incorpora-

tion of moist reversible processes, and we discuss how the

different approaches handle phase transitions within the

numerical solution of the overall flow dynamics. We will

refer to the first as the one-step coupled scheme, in which

the solution variables include energy ofmoist air and total

water, and the effects of phase change are diagnostically

evaluated and incorporated when computing the dynam-

ics within each time step. Two variants of the two-step

technique will be then studied. In the first one, denoted

the two-step semisplit scheme, the density, momentum,

and energy are evolved exactly as in the one-step fully

coupled scheme, but liquid water and water vapor are

advected separately and no conversion between them is

allowed. In the second one, denoted the two-step fully

split scheme, the dynamics are first evolved neglecting

any effects of phase change. In both of the split schemes,

the first step is used to advance the solution by one or

more time steps before being followed by an adjustment

procedure that imposes the saturation requirements
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using the Clausius–Clapeyron formula, specifically up-

dating ql, qy, and T. Notice that during the first step the

water phases may not be in thermodynamic equilibrium

anymore; therefore, the saturation adjustment naturally

involves an irreversible process. The latter is, however,

a result of the numerical approach to approximate moist

flows with phase transitions, which are considered as re-

versible processes in our model. Our formulation and im-

plementation of moist microphysics for the first and second

two-step schemes are similar, respectively, to Ooyama

(1990) and Satoh (2003).

In all three cases we define a state vector of conserved

variables U and write the time evolution of U in the

following form:

›U

›t
52$ � F1 Sg ,

using a finite-volume discretization, where F is the flux

vector and Sg represents only the gravitational source

terms in the equations for momentum and energy.

We advance U by one time step Dt using the time

discretization:

Un115Un 2Dt$ � Fn11/2 1DtSn11/2
g . (13)

The total density, r, as well as rqa and rqw (or rqa, rqy,

and rql), are included in U; following the advective

update we adjust qa and qw to enforce that r5 rqa1 rqw
(or equivalently r 5 rqa 1 rqy 1 rql). The construction

of F is purely explicit, and based on an unsplit Godunov

method with characteristic tracing. The solution, U, is

defined on cell centers; we predict primitive variables

Q from cell centers at time tn to edges at time tn11/2, and

use an approximate Riemann solver to construct fluxes

Fn11/2 on cell faces.Within the construction of the fluxes,

the pressure is diagnostically computed as needed on

cell edges using the EOS inEq. (9). As wewill see below,

the schemes differ in the values of the moist thermo-

dynamic variables that enter this intermediate call to the

EOS. This algorithm is formally second order in both

space and time; we refer to Almgren et al. (2010) for the

complete details of this numerical implementation.

The time step in Eq. (13) is computed using the

standard CFL condition for explicit methods. Following

Almgren et al. (2010), we set a CFL factor sCFL between

0 and 1 and for a calculation in ndim dimensions:

Dt5sCFL min
i51,...,n

dim

fDtig, Dti 5
Dxi

juij1 cm
, (14)

with cm, the sound speed in moist air, and Dti computed

as the minimum over all cells. The sound speed is

computed using the moist EOS, and is defined in this

study as for an ideal gas:

cm 5

ffiffiffiffiffiffiffiffiffi
gmp

r

r
, gm5

cpm

cym
,

where gm is the isentropic expansion factor of moist air.

In each of the schemes we also need to be able to

obtain point-wise values of (qy, ql, T) given (r, u, E, qa,

qw), using the Clausius–Clapeyron relation and the sat-

uration requirements. We refer to this as the saturation

adjustment procedure, and do so by solving the follow-

ing nonlinear system of equations (Satoh 2003):

ê5E2
u � u
2

5 cym(qa, qy, ql)(T2Ttrip)1qyE0y ,

qy 5min[qy*(r,T), qw] ,

ql 5 qw 2qy .

9>>>>=>>>>;
(15)

The numerical solution of Eq. (15) uses an iterative

Newton solver, described in detail here for the sake of

completeness:

d Step 1: Initialization. Define the initial guess, ~T5Told,

where Told is the last known temperature in the

current cell.
d Step 2: Compute mass fractions: qy and ql. Following

the Clausius–Clapeyron relation in Eq. (10), compute

epy*( ~T)5 ptrip

� ~T

Ttrip

�a
y

exp

�
by

�
1

Ttrip

2
1
~T

��
,

and eqy*5 eqy*(r, ~T) from Eq. (12), so that

eqy 5min[eqy*, qw], eql 5 qw 2eqy .
We can then evaluate

êe5 cym(qa,eqy,eql)( ~T2Ttrip)1eqyE0y .

d Step 3: Update temperature: T. Define a local func-

tion: f ( ~T)5 êe2 ê, and update ~T by computing a New-

ton correction step:

~T5 ~T2D ~T , D ~T5 f ( ~T)/› ~Tf (
~T) ,

where

› ~Tf 5 › ~Tqy*[Le(
~T)2Ry

~T]1 cym,

› ~Tqy*5 qy*

0@ay 2 1

~T
1

by

~T2

1A ,

with the latent heat of vaporization Le defined as

Le(T)5E0y 1RyT1 (cy y 2 cyl)(T2Ttrip) . (16)
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d Step 4: Stopping criterion. Introducing an accuracy

tolerance, tol, and denoting err5 jD ~T/ ~Tj, we define

the following stopping criterion:

d If err . tol: go back to step 2;
d If err# tol: stop iterating and set T5 ~T , qy 5eqy, and
ql 5eql.

Notice that if qw ,qy*, all water is in the form of vapor,

that is, qy 5 qw and ql 5 0; the temperature is hence

directly computed from Eq. (8), or equivalently from

steps 1 to 4 considering that in this case: › ~T
f 5 cym. This

procedure remains valid for any moist equation of state,

as long as a Clausius–Clapeyron relation in Eq. (10) is

available to define the saturation pressure.

We note that for flows in which no phase chamnge

occurs, the time evolution of the solution in the one-step

and two-step schemes will be identical.

a. One-step coupled scheme

We consider the following set of evolution equations:

›r

›t
1$ � (ru)5 0,

›(ru)

›t
1$ � (ruu)1$p52rgêz ,

›(rE)

›t
1$ � (rEu1 pu)52rg(u � êz) ,

›(rqa)

›t
1$ � (rqau)5 0,

›(rqw)

›t
1$ � (rqwu)5 0,

9>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>;

(17)

and close the system with the moist EOS in Eq. (9).

Ooyama (1990) considers the same formulation but the

conservation equation for entropy density of moist air is

considered instead of (rE).

We define the state vector of conserved variables,U5
(r, ru, rE, rqa, rqw); the primitive variables in the flux

construction are then Q5 (r, u, rê, qa, qw). In defining

the pressure used to construct the fluxes we solve

Eq. (15) for T, qy, and ql, given the values of Q before

calling the EOS. This approach is coupled in the sense

that the moist processes are incorporated as part of the

dynamical evolution of the system. Because we evolve

qw, rather than qy and ql separately, and call the satu-

ration adjustment procedure any time qy and ql are

needed, there is never any lagging or neglect of moist

effects.

b. Two-step schemes

Here we consider the following set of equations:

›r

›t
1$ � (ru)5 0,

›(ru)

›t
1$ � (ruu)1$p52rgêz ,

›(rE)

›t
1$ � (rEu1 pu)52rg(u � êz) ,

›(rqa)

›t
1$ � (rqau)5 0,

›(rqy)

›t
1$ � (rqyu)5 ey ,

›(rql)

›t
1$ � (rqlu)52ey ,

9>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>;

(18)

where we now define U 5 (r, ru, rE, rqa, rqy, rql) and

Q5 (r, u, rê, qa, qy, ql)We note that, in contrast to the

one-step coupled scheme, here we separately advance

water vapor and liquid water rather than advancing

total water. Satoh (2003) considers the same setup but

an equation for internal energy accounting only for

sensible heat is evolved instead of (rE); in that for-

mulation a source term corresponding to the latent

heat release then appears in the conservation equation

for energy. In our case only the equations for qy and ql
explicitly contain information about the water phase

transitions, which simplifies the comparison of the one-

and two-step schemes for the purposes of the present

study.

In the first step of both split schemes, qy and ql are

advected with ey 5 0 In the semisplit scheme, the

saturation adjustment process is performed before

the intermediate pressure is computed from the EOS

to define Fn11/2, just as in the one-step coupled

scheme; the only difference between the procedure

here and in the one-step scheme is that we must first

define qw 5 qy 1 ql before doing the saturation

adjustment. In the fully split scheme, the temperature

and pressure are computed for Fn11/2 given the ex-

isting values of qy and ql on the faces; no saturation

adjustment is performed. Given Fn11/2, the update in

Eq. (13) is performed exactly as in the one-step

scheme. In the second step of the split schemes we

impose the saturation adjustment to correct U, specif-

ically qy and ql, but only if the designated time interval

has passed.

In both split schemes, the first step may be performed

multiple times before the second step is called. Defining

tsat and Dtsat, respectively, as the time at which the sat-

uration adjustment step is performed, and the specified

time interval between saturation adjustments, we can

describe each of these schemes below.
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1) TWO-STEP SEMISPLIT SCHEME

d Step I: Advance dynamics through Dt. Advance

Eq. (18) in time from t n to tn11 5 tn 1 Dt, advancing
qy and qlwith ey 5 0, but define qw5 qy 1 ql at t

n11/2 to

be used in the saturation adjustment procedure, and

compute the intermediate pressure used to construct

the fluxes with saturation-adjusted variables.
d Step II: Moist microphysics adjustment. If tn11$ tsat1
Dtsat, where tsat records the last time the correction

step was computed, solve Eq. (15) for qy, and ql at t
n11

given values of (r, ê, qa, qw 5 qy 1 ql) at tn11, using

the iterative procedure described in steps 1–4. Set

tsat 5 tn11.

2) TWO-STEP FULLY SPLIT SCHEME

d Step I: Advance dynamics through Dt. Advance

Eq. (18) in time from tn to tn11 5 tn 1 Dt with ey 5 0.

In defining the pressure used to construct the fluxes, do

not perform the saturation adjustment procedure. In-

stead, since we explicitly evolve qy and ql separately,

compute the temperature, T, directly from Eq. (8)

(given E and u, hence ê), effectively neglecting any

phase change that might occur during the time step.

The pressure is then determined from the EOS given

these values.
d Step II is exactly as above.

Notice that ifDtsat#Dt, themoist and thermodynamic

variables are corrected immediately after each update of

the dynamics. In the semisplit scheme, the dynamics are

evolved with saturation-adjusted variables, but qy and ql
themselves drift from their correct values at the end of

the time step; the larger Dtsat is, the more they differ

from those diagnostically recovered from the one-step

solution. In the fully split scheme, the larger Dtsat is, the
more the dynamics evolve neglecting phase changes.

Recall that our numerical implementation does not dis-

criminate between fast and slow modes associated with

the compressible equations; therefore, whenever Dtsat .
Dt, where Dt is limited by the acoustic CFL condition,

several dynamical time steps Dt are performed before the

saturation adjustment.

4. Numerical simulations

In what follows we first consider the benchmark

problem proposed in Bryan and Fritsch (2002) for moist

flows, along with the corresponding configuration for

dry air originally presented in Wicker and Skamarock

(1998). Both cases are presented and results are compared

with those obtained in Bryan and Fritsch (2002) in order

to first validate our basic numerical implementation. We

then compare the approximations obtained with the

different numerical schemes previously described. In

particular, we investigate the impact of the time interval

of saturation adjustment Dtsat on the moist flow for the

two split schemes. A second configuration based on

Grabowski and Clark (1991) is also studied for non-

isentropic background states and both saturated and

only partially saturated media, to further assess the

different numerical techniques.

a. Numerical validation

Bryan and Fritsch (2002) present solutions of

a benchmark test case using the fully compressible

equations, where the conservation equations for water

vapor and liquid water are written in terms of the water

vapor and cloud mixing ratios: ry 5 qy/qa and rc 5 ql/qa,

respectively. The conservation equation for energy in

Eq. (3) is replaced by

rcym

�
›T

›t
1 u � $T

�
52p($ � u)2 (Ly 2RyT)ey ,

with the latent heat of vaporization Ly defined as

Ly 5Ly0 2 (cpl 2 cpy)(T2T0) , (19)

whereLy0 andT0 are constant reference values ofLy and

T, respectively. The nondimensional Exner pressure, p,

and potential temperature, u, are used in Bryan and

Fritsch (2002), defined as

p5

�
p

p00

�R
a
/c

pa

, u5
T

p
, (20)

where p005 1000mb. The numerical scheme thus solves

time-dependent equations for (u, p, u, ry, rc), where the

evaporation rate ey appears in the source terms for the

equations for p, u, ry, and rc. The technique introduced

in Klemp andWilhelmson (1978) is used to integrate the

equations in two steps: a dynamical step and the mi-

crophysics step. In the dynamical step, ey is neglected

and the portions of the governing equations that support

acoustic waves are updated with a smaller time step than

the other terms. The model is integrated with a third-

order Runge–Kutta scheme and fifth-order spatial dis-

cretization for the advective terms. Then, a saturation

adjustment technique, similar to that proposed by Soong

and Ogura (1973), is used in the microphysics step in

which only the terms involving phase change are in-

cluded. Notice that this approach is similar to our fully

split procedure described in section 3b2, with the main

difference that in our formulation the terms related to

phase changes appear only in the equations for qy and ql.

The hydrostatic base state pressure can be found

through
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dp0

dz
52

g

cpaur0
, (21)

where the subscript 0 stands for hydrostatic base quan-

tities, and the density potential temperature ur is de-

fined as

ur 5 u
(11 ry/�)

(11 rt)
, (22)

with the total water mixing ratio, rt 5 qw/qa, and � 5
Ra/Ry 5 My/Ma.

For the next set of computations we consider the fol-

lowing constant parameters, taken from Bryan and

Fritsch (2002):Ra5 287 J kg21K21,Ry 5 461 J kg21K21,

Ly0 5 2.5 3 106 J kg21, cya 5 717 J kg21K21, cyy 5
1424 J kg21K21, cpl 5 4186 J kg21K21, T0 5 273.15K,

and g5 9.81ms22. The remaining parameters used in our

model are defined such that we have the same definition

of the latent heat of vaporization, that is, Ly 5 Le from

Eqs. (19) and (16). Therefore, we just need to consider

Ttrip 5 T0, cyl 5 cpl, and E0y 5 Ly0 2 RyTtrip. The satu-

ration vapor pressure is computed with the Clausius–

Clapeyron equation in Eq. (10) with constants: ay 5
0 and by 5Ly0/Ry, with ptrip5 611Pa, taken fromO’Neill

and Klein (2014) that considers the same benchmark

problem.

1) THE DRY SIMULATION

Following Wicker and Skamarock (1998) and Bryan

and Fritsch (2002), we consider a two-dimensional

computational domain with 10-km height and 20-km

width. The initial atmospheric environment is defined by

a constant potential temperature of u0 5 300K and the

pressure field is obtained by integrating upward the

hydrostatic equation in Eq. (21). A warm perturbation is

introduced in the domain, given by

u0 5 2 cos2
�
pL

2

�
, (23)

where

L5min

241,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
x2 xc
xr

�2

1

�
z2 zc
zr

�2
s 35 , (24)

with xc 5 10 km, zc 5 2 km, and xr 5 zr 5 2 km. Notice

that our formulation does not use the u 2 p formalism;

the expressions in Eq. (20) are used for the conversions,

while the initial perturbation in Eq. (23) is applied

at constant pressure p(z). We impose zero normal

velocities and homogeneous Neumann boundary con-

ditions for the tangential velocity components on all

four boundaries. [Tangential velocity boundary condi-

tions are necessary for the unsplit computation of ad-

vective fluxes in this specific numerical solver (Almgren

et al. 2010).] For the thermodynamic variables, we im-

pose homogeneous Neumann boundary conditions on

the horizontal sides; the background state is re-

constructed by extrapolation at vertical boundaries in

order to determine the corresponding fluxes.

Let us first consider a uniform grid of 256 3 128

points, slightly finer than the original 100-m grid spacing

in Bryan and Fritsch (2002). For all computations the

time step is computed using the CFL factor sCFL5 0.9 in

Eq. (14). This yields roughly constant time steps of about

0.2 s in this configuration for the dry thermal computa-

tions. Figure 1 (left) illustrates the numerical results for

the perturbation potential temperature (u0 5 u 2 u0)

after 1000 s. The maximum and minimum values for

u0are given by 2.099 23 and 20.185 25K, respectively,

compared with the original 2.071 78 and20.144 409K in

Bryan and Fritsch (2002). Good general agreement is

also found with respect to the solutions in Bryan and

Fritsch (2002) in terms of the height and width of the

rising thermal. However, some differences in the dy-

namics can be noticed around the two vortices devel-

oped on the sides of the thermal. In Bryan and Fritsch

(2002) both tips of the thermal seem to roll up slightly

higher around the vortex cores. The maximum and

minimum values of vertical velocity are in fact localized

in this region, which in our computation are given by

12.4991 and27.588 96m s21, respectively, slightly lower

than the values of 14.5396 and28.580 69m s21 in Bryan

and Fritsch (2002).

Besides the different choice of variables, there are two

main differences between our implementation and the

one in Bryan and Fritsch (2002) that may explain the

height difference of the thermal tips. The first difference

concerns the higher-order discretization in both time

and space considered in Bryan and Fritsch (2002). The

second one is given by the numerical decoupling of

acoustic waves considered in Bryan and Fritsch (2002).

Figure 1 (right) shows the same results for u0 and a 2563
128 grid, compared with a solution computed using the

same numerical scheme this time on a finer grid of 5123
256 (consequently, time steps are roughly halved to

0.1 s). It can be thus seen that a higher resolution in both

time and space compensates for the lower-order dis-

cretizations and yields better agreement with the solution

in Bryan and Fritsch (2002), as seen in Fig. 2. In partic-

ular, maximum and minimum values of vertical veloc-

ity are this time equal to 13.9372 and 28.300 85m s21,

respectively.
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2) THE MOIST SIMULATION

Here we consider the same configuration as above,

but now with a moist atmospheric environment. A

neutrally stable environment can be obtained by con-

sidering the wet equivalent potential temperature ue,

defined for a reversible moist adiabatic atmosphere by

ue5T

�
pa
p00

�2R
a
/(c

pa
1c

pl
r
t
)

exp

24 Lyry
(cpa1 cplrt)T

35 , (25)

taken from Emanuel (1994). Supposing that the total

water mixing ratio is constant at all levels, the vertical

profiles ofp, u, ry, and rc can be obtained using Eqs. (21),

(22), and (25), if values for ue and rt are provided. We

finally compute the hydrostatic base state written in

terms of p, T, qy, and ql in our formulation. The value of

rt must be greater than rys 5 qy*/qa, so that the initial

environment is saturated, that is, qy 5 qy* and ql . 0 ev-

erywhere in the domain. The initial perturbation in

Eq. (23) is then introduced in such a way that the

buoyancy fields are identical in both the dry and moist

FIG. 1. Dry thermal simulation at 1000 s. (left) Perturbation potential temperature on a 256 3 128 grid, contoured every 0.2K. (right)

Comparison of the perturbation potential temperature computed on a 256 3 128 (black) and 512 3 256 (red) grids, contours every 1K.

FIG. 2. Dry thermal simulation at 1000 s on a 512 3 256 grid. (left) Perturbation potential temperature contoured every 0.2K. (right)

Vertical velocity contoured every 2m s21, negative contours are dashed. Compare to Fig. 1 in Bryan and Fritsch (2002).
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simulations, when u0 5 300K in the dry case (Bryan and

Fritsch 2002). The initial field for u is thus given by

u(p,T)

�
11

rys(p,T)

�

�
5 ur0(11 rt)

�
u0

300
1 1

�
,

which is solved pointwise for T throughout the domain

at constant pressure p(z).

First, we use the one-step coupled scheme described

in section 3a to compute the moist rising thermal with

input parameters: ue0 5 320K and rt 5 0.02. For a 2563
128 grid, time steps are roughly constant of about 0.21 s,

similar to the dry computation. The introduction of

moist microphysics involves an additional cost of ap-

proximately 15%–20% in CPU time with respect to the

dry computation, which roughly corresponds to the

computational cost of the Newton iterative procedure,

described through steps 1–4 in section 3, to solve the

nonlinear system in Eq. (15) throughout the domain.

(A fixed tolerance tol 5 10210 has been used for the

Newton solver for all results shown.) The maximum and

minimum values for the perturbation wet equivalent

potential temperature (u0e 5 ue 2 ue0) are given by

4.003 67 and 20.300 699K, respectively, compared with

the original 4.095 21 and 20.305 695K in Bryan and

Fritsch (2002). Our computation yields 13.3267 and

28.773 65m s21, for the maximum and minimum verti-

cal velocities, respectively, which are slightly lower than

15.7130 and 29.926 98m s21 in Bryan and Fritsch

(2002). Both solutions look reasonably similar in terms

of position, height, and width of the thermal, as seen

in Fig. 3. Some differences can nevertheless be ob-

served around the vortex cores, as in the previous dry

computation. Increasing the spatial and temporal resolu-

tion as before, yields even better agreement, as seen in

Fig. 4 for a 5123 256 grid. For instance, themaximumand

minimum values of vertical velocity are now 15.3301 and

29.687 17ms21, respectively. These results provide a val-

idation of the numerical implementation of the dynamics

solver in conjunction with the moist thermodynamics.

b. Comparison of different schemes

We now investigate the performance of the two-step

schemes detailed in section 3b for the moist thermal

simulation. In both two-step schemes—the semisplit and

the fully split—the dynamics is advanced allowing no

FIG. 3. Moist thermal simulation at 1000 s. Perturbation potential

temperature on a 256 3 128 grid contoured every 0.5K.

FIG. 4. Moist thermal simulation at 1000 s on a 512 3 256 grid. (left) Perturbation potential temperature contoured every 0.5K. (right)

Vertical velocity contoured every 2m s21, negative contours are dashed. Compare to Fig. 3 in Bryan and Fritsch (2002).
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conversion between water vapor and liquid water for

a time interval of Dtsat before an adjustment step is

performed to account for the saturation requirements.

For the purposes of this study, we now consider the

reference solution to be that given by the one-step

coupled scheme. We focus on evaluating the impact of

Dtsat on the results from the split schemes.

1) BENCHMARK PROBLEM

We consider again the moist configuration of the

benchmark problem in Bryan and Fritsch (2002). All

simulations were carried out on a uniform grid of 2563
128. Recall that the motivation for this study arises from

the fact that numerical methods that do not explicitly

resolve the acoustic modes typically run with a much

larger time step than that required by explicit evolu-

tion of the fully compressible equations. Although we

continue to resolve the acoustic waves explicitly in

this study, we mimic the effect of these larger time

steps on the representation of phase changes by in-

creasing Dtsat.
We first consider the effect of varying Dtsat in the

semisplit solver. Regardless of the value of Dtsat the

compressible dynamics are still evolved with time steps

of about 0.21 s. For comparison, we note the time step

used by O’Neill and Klein (2014) to solve the same

problem in a pseudo-incompressible framework was

Dt 5 1.66 s (corresponding to an advective CFL of 0.5).

As previously noted, the evolution of r, u, and E is

identical to that in the one-step coupled scheme. The

evolution of liquid water and water vapor neglects phase

change; therefore, a drift in the values of qy and ql is

observed with respect to the reference solution in which

the saturation requirements are verified every time step.

The semisplit solution drifts from the reference solution,

corresponding in this case to the saturated state qy* and

qw 2 qy*, only until t. tsat1Dtsat, at which point qy and ql
are restored to the same values as in the reference so-

lution, since the dynamics of the semisplit solution are

unaffected by the drift. In Fig. 5 we present results for u0e
at times t 5 903, 906, 915, and 930 s, from a simulation

with Dtsat 5 30 s and tsat 5 900 s each overlaid on the

reference solution. For time 930 s, Fig. 5 shows the

semisplit solution before the saturation adjustment has

taken place. Not surprisingly, the larger the time since

the last saturation adjustment at 900 s, the larger the

differences between the semisplit solution and the ref-

erence solution. After the adjustment step both solu-

tions are identical. Recall that even though the dynamics

and thus the position of the thermals are the same in

both cases, ue depends on qy and ql, via ry and T in Eq.

(25), which are not the same in both solutions between

times 900 and 930 s.

Defining Dqy 5 qy 2 qy* as the maximum value of the

drift over each Dtsat (which occurs when we reach tn11$

tsat 1 Dtsat), we show in Fig. 6 the variation of jDqy/qy*j in
percentage for simulations with Dtsat 5 0, 3, 6, and 30 s.

Again, not surprisingly, we observe that the maximum

drift is roughly proportional to Dtsat; when Dtsat5 3 s the

maximum drift is almost 2%, whereas for Dtsat 5 30 s

the drift reaches almost 20%. For this particular prob-

lem, the maximum drifts are due to a local excess of the

computed qy with respect to its saturated value. In the

simplified set of equations considered here, qy and ql are

not used in any other microphysical processes, thus,

there is no practical impact from the error due to the

drift. However, in a more realistic simulation in which

the values of qy and ql might enter into other processes,

the results here demonstrate that if Dtsat � Dt, one must

be cautious in the use of qy and ql with lagged saturation

adjustment, even if the dynamics is correctly described.

We now consider the effect of Dtsat � Dt on the evo-

lution of the dynamics using the fully split solver. In

Fig. 7 we present results from simulations using the fully

split solver and Dtsat 5 0, 3, 6, and 30 s, again each

overlaid on the reference solution. Here we observe that

fully neglecting the effect of phase change on the dy-

namics for long time intervals (relative to the time step

numerically defined by the acoustics) allows significant

deviations from the reference solution. To quantify this

difference, we note that the maximum vertical velocities

obtained with the fully split solver are 13.3267, 12.9247,

12.6430, and 9.401 92m s21, for Dtsat 5 0, 3, 6, and 30 s,

respectively; whereas the semisplit solver yields

13.3267m s21 in all cases, consistent with the coupled

reference solution.

2) NONISENTROPIC BACKGROUND STATE

We consider the hydrostatically balanced profiles in

Clark and Farley (1984) [their Eq. (2)] for the back-

ground state:

u0(z)5 u00 exp(Sz) ,

p0(z)5 p00

�
12

g

cpau00S
[12 exp(2Sz)]

�c
pa
/R

a

,

9>=>; (26)

where u00 and p00 stand for the environmental potential

temperature and pressure at the surface (z 5 0), re-

spectively; with the static stability S defined as S5N2/g5
d(lnu0)/dz (N is the Brunt–Väisälä frequency). The po-
tential temperature is given by Eq. (20). For the fol-

lowing computations we define a computational domain

4 km high and wide, with periodic horizontal boundary

conditions and the same vertical boundary conditions

implemented for the previous benchmark problem. The
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same thermodynamic parameters fromBryan and Fritsch

(2002) are considered, whereas constants in Eq. (11)

coming from Romps (2008) are considered in the

Clausius–Clapeyron equation in Eq. (10) with ptrip 5
611Pa. From Grabowski and Clark (1991), we take S 5
1.3 3 1025m21, u00 5 283K, and p00 5 850hPa. All sim-

ulations were performed on a uniform grid of 256 3 256.

For our formulation we also need to compute the hy-

drostatic base density r0 based on the background tem-

perature and pressure in Eq. (26), and the distribution of

air, water vapor, and liquid water in the atmosphere. The

latter quantities are set by the relative humidity in the

atmosphere RH measured in percentage and defined as

RH5 (py/py*)3 100. In particular if RH0 , 100%, then

no liquid water should be present in the atmosphere in

order to guarantee the thermodynamic equilibriumof the

initial state, that is, ql0(z) 5 0. We consider in this study

two cases: first, a saturated medium that is RH0 5 100%

and rt 5 0.02, just like in the moist benchmark problem;

and a second configuration with RH05 20%, and, hence,

no liquid water in the initial background state. Contrary

to the benchmark configuration in Bryan and Fritsch

(2002), we now have in either case a nonisentropic

background state, where the following definitions of

specific entropy have been adopted (Romps 2008):

sa 5 cpa log

 
T

Ttrip

!
2Ra log

 
p

ptrip

!
,

sy 5 cpy log

 
T

Ttrip

!
2Ry log

 
p

ptrip

!
1 S0y,

sl 5 cyl log

 
T

Ttrip

!
,

sm 5 qasa1 qysy 1 qlsl , (27)

FIG. 5. Semisplit solutions for u0e with Dtsat 5 30 and tsat 5 900 s each overlaid on the reference solution. (top left) t5 903 and (top right)

t 5 906 s; (bottom left) t 5 915 and (bottom right) t 5 930 s. Contours are every 2K.
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for dry air, water vapor, liquid water, and moist air,

with S0y 5 E0y/Ttrip 1 Ry. (Notice that the specific en-

tropy of dry air at the triple point is neglected in this

definition.)

Let us consider the first configuration with an initially

saturated environment. In this case the moist squared

Brunt–Väisälä frequency N2
m can be computed accord-

ing to Durran and Klemp (1982) [their Eqs. (36)–(37)],

which yields N2
m monotonically varying from 3.5 3

1026 s22 at the surface up to 1.33 1025 s22 at the top of

the computational domain. Positive values of N2
m imply

static moist stability. Similar to Eq. (23), we introduce

a warm perturbation on temperature:

T 05 2 cos2
�
pL

2

�
, (28)

where L is defined by Eq. (24), with xc 5 2 km, zc 5
0.8 km, and xr 5 zr 5 300m. The water distributions, as

well as the density, are thus adjusted to the perturbed

temperature with the original pressure field. As for the

previous problem both the coupled and the split

schemes with Dtsat 5 0, yield the same solutions, with

sCFL 5 0.9 and roughly constant time steps of about

0.04 s. Increasing Dtsat in the fully split scheme has a

comparable effect to that seen in the benchmark prob-

lem with an isentropic base state. Figure 8 illustrates

the latter behavior in terms of the specific entropy of

moist air [Eq. (27)] for Dtsat 5 0.6 and 6 s, after 300 s of

integration. Simulations were stopped before the non-

linearities becomemore apparent and subgrid turbulence

starts playing a more important role in the dynamics, as

analyzed in Grabowski and Clark (1991). We recall that

for the sake of simplicity subgrid turbulence is not con-

sidered in the present study. We note that the choice of

Dtsat 5 0.6 s is based on the approximate size of the time

step that would be used if computed from the advective

rather than acoustic CFL condition (i.e., if the time step

were based on the fluid velocity rather than the sound

speed).

For the second configuration with RH0 5 20%, we

consider the same temperature perturbation in Eq. (28)

and an additional circular perturbation on the relative

humidity, which is set to 100% for a radius r, 200m, as

considered in Grabowski and Clark (1991). A transition

layer is assumed such that

RH5RH01 (1002RH0) cos
2

�
p

2

r2 200

100

�
,

200# r# 300, (29)

taken also from Grabowski and Clark (1991). Initially

there is no liquid water in the domain, not even in the

saturated region, whereas the perturbed water vapor is

recomputed based on Eqs. (28) and (29) with the origi-

nal static pressure. After performing the same tests with

the different numerical techniques, the same observa-

tions can be made in terms of moist saturation adjust-

ments. For instance, Fig. 9 shows results obtainedwith the

fully split scheme with an adjustment interval of Dtsat 5
6 s; once again sCFL5 0.9, which yields roughly constant

FIG. 6. Drift of qy computed with the semisplit solver. Time variation of jDqy/qy*j in percentage.
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time steps of about 0.04 s. Notice that in this case, dif-

ferences between the fully split and coupled approxi-

mations are smaller with respect to the previous

configurations for saturated and both isentropic and

nonisentropic environments. This is due to the fact that

all the liquid water is mainly contained in the perturbed

area and hence only this region is subjected to phase

changes and active moist microphysics.

FIG. 7. Fully split solutions for u0e compared with the coupled ones. (top left) Dtsat 5 0 and (top right) Dtsat 5 3 s;

(bottom left) Dtsat 5 6 and (bottom right) Dtsat 5 30 s. Contours are every 2K.

FIG. 8. Initially saturated, nonisentropic background state. Fully split solutions for sm after 300 s with (left)Dtsat5 0.6 and (right)Dtsat5 6 s,

compared with the coupled ones. Contours are every 10 J kg21K21.
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5. Summary

In this paper, we have studied the incorporation of

reversible moist processes related to phase change

phenomena into numerical simulations of atmospheric

flows. Specifically, we have tried to characterize the

impact of modifying the time scale at which the moist

thermodynamics is adjusted to the saturation require-

ments. For the purpose of this study, the compressible

Euler equations were written in a form including conser-

vation equations for total density, momentum, and energy

of moist air, and were explicitly evolved with time steps

dictated by the acoustic CFL condition.

Two different approaches were considered to evolve

the system. In the first approach, a one-step coupled

procedure solves the equations of motion together with

a conservation equation for total water content. Because

of the choice of variables, in particular because the en-

ergy of moist air includes the contribution of both sen-

sible and latent heats, this formulation does not include

source terms related to phase change in either the en-

ergy or the total water equation. Therefore, the system

of equations can be solved without needing to estimate

or neglect source terms related to phase change. The

pressure used to update the momentum and energy in

the evolution equations is computed from the equation

of state following a saturation adjustment procedure.

In the second approach, the evolution equation for

total water is replaced by separate evolution equations

for liquid water and water vapor, where source terms

related to phase change now appear. A two-step tech-

nique is implemented in which the system of equations is

first evolved with these source terms set to zero. In

a second step, a saturation adjustment procedure is

performed after a time intervalDtsat, updating the values
of liquid water and water vapor. We consider two vari-

ants of the two-step scheme. In the first, a semisplit

strategy in which the dynamics of the moist flow are

correctly computed, a drift is expected and observed in

the values of water vapor and liquid water during the

time interval in which the saturation adjustment is not

imposed. In the second, a fully split scheme, the satu-

ration adjustment is not performed during the evolution

of the dynamics, and the dynamics themselves are seem

to drift from those of the fully coupled solution.

In summary, numerical tests of the semisplit scheme

showed that nontrivial deviations of the water vapor and

liquid water from their correct values may occur even

when the dynamics is correctly described. Tests of the

fully split scheme demonstrated that imposing the sat-

uration adjustment too infrequently relative to the

time step at which the dynamics evolve may lead to

inaccuracies in the dynamical evolution. Further testing

with both isentropic and nonisentropic background

states, as well as saturated and nonsaturated initial

configurations, confirmed the initial findings. It is hoped

that the insight gained here as to how closely the satu-

ration adjustment should be numerically coupled to the

FIG. 9. Nonisentropic background state with a partially saturated perturbation. Fully split

solution for sm after 300 s with Dtsat 5 6 s compared with the coupled one. Contours are every

50 J kg21K21.
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dynamics will carry over to methods in which the dy-

namics themselves are evolved with larger time steps. This

will be further investigated and discussed in future work.
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