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ABSTRACT

This paper explores whether cumulus drag (i.e., the damping ofwinds by convectivemomentum transport) can be

described by an effective Rayleigh drag (i.e., the damping of winds on a constant time scale). Analytical expressions

are derived for the damping time scale and descent speed of wind profiles as caused by unorganized convection.

Unlike Rayleigh drag, which has a constant damping time scale and zero descent speed, the theory predicts

a damping time scale and a descent speed that both depend on the vertical wavelength of the wind profile. These

results predict that short wavelengths damp faster and descend faster than long wavelengths, and these predictions

are confirmed using large-eddy simulations. Both theory and simulations predict that the convective damping of

large-scale circulations occurs on a time scale ofO(1–10) days for vertical wavelengths in the range of 2–10 km.

1. Introduction

For nearly 50 years, Rayleigh damping has been used

in simplified models of atmospheric dynamics. The

Matsuno–Gill model uses a Rayleigh damping, and au-

thors have typically found the best match with obser-

vations using a damping time scale in the range of 1–10

days. For example, a brief survey of the literature finds

Matsuno–Gill models used with damping time scales of

1.8 days (Matsuno 1966), 5 days (Chang 1977), 2.5 days

(Gill 1980), $3 days (Chang and Lim 1982), 2–5 days

(Neelin et al. 1987), 1.25 days (Seager 1991), 2 days (Yu

and Neelin 1997), 10 days (Wu et al. 2000), 10–20 days

(Lee et al. 2009), and 5 days (Sugiyama 2009). Another

model of atmospheric dynamics that makes use of a

Rayleigh damping is the weak pressure gradient (WPG)

approximation (e.g., Romps 2012c). Damping time

scales used with WPG include 0.5 days (Raymond and

Zeng 2000), 4 and 10 days (Kuang 2008), 1–10 days

(Blossey et al. 2009), 2.5 days (Kuang 2011), and 0.4 days

(Romps 2012a). Furthermore, studies of the National

Centers for Environmental Prediction–National Center for

Atmospheric Research (NCEP–NCAR) and European

Centre for Medium-Range Weather Forecasts (ECMWF)

reanalyses conclude that the momentum budget of the

Madden–Julian oscillation in those reanalyses can be

closed by the addition of a damping time scale on the

order of 2–10 days (Lin et al. 2005), and similarly for

the Walker circulation with a damping time scale of

1–10 days over the warm pool (Lin et al. 2008).

Why have the majority of these papers found it effi-

cacious to include a damping time scale in the range of

1–10 days? And what physical mechanism operating

in the free troposphere could generate such a Rayleigh

damping? In the early 1970s, Holton and Colton (1972)

found evidence for damping of upper-tropospheric winds

(with a time scale of 2 days) and concluded that mo-

mentum transport bymoist convectionmust be responsible.

Ever since, studies of the Matsuno–Gill models have

justified their use of Rayleigh damping by alluding to

convective momentum transport. Indeed, the accumu-

lated evidence from a variety of studies points to a po-

tentially significant role for convective momentum

transport in the large-scale momentum budget (e.g.,

Houze 1973; Schneider and Lindzen 1977; Carr and

Bretherton 2001; Yang et al. 2013). For example, Robe

and Emanuel (2001) found a damping time scale of

0.5 days in their cloud-resolving simulation of radiative–

convective equilibrium (RCE). In another study with

a cloud-resolving model, Mapes and Wu (2001) found

a damping rate of kinetic energy that ranged from240%

to 280% per centimeter of precipitation; for a rain rate

between 1 and 4myr21 (typical of the deeply convecting
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tropics), this translates into a damping time scale for mo-

mentum between 1 and 14 days. Nevertheless, no theory

has been developed to explain why convection should

generate a Rayleigh damping on these time scales.

This paper explores the effect of moist convection on

shear in a simple bulk-plume model and in large-eddy

simulations. The focus here is on unorganized convec-

tion, as opposed to organized convection, which is

known to interact with shear in such a way as to produce

upgradient momentum transfer (e.g., LeMone 1983;

Moncrieff 1992; Wu and Yanai 1994). The next section

derives an analytical theory for the effect of unorganized

convection on wind profiles using the bulk-plume equa-

tions. Although convective downdrafts can make a sub-

stantial contribution to mass fluxes (e.g., Johnson 1976;

Jorgensen et al. 1985), they are neglected in this theory for

simplicity. Following the derivation in section 2, section 3

tests the validity of this analytical theory by comparing it

against the evolution of passive tracers in a large-eddy

simulation of RCE. Section 4 repeats this analysis for sim-

ulations with sinusoidal wind profiles, and section 5 sum-

marizes the findings and discusses the implications.

2. Theory

The bulk-plume equations for convective momentum

transport can be written as

›zM5 («2 d)M , (1)

r›ty5 ›z[M(y2yc)], and (2)

›zyc 5 «(y2yc)1F/M , (3)

whereM is the convectivemass flux (kgm22 s21), « is the

fractional entrainment rate (m21), d is the fractional

detrainment rate (m21), y is the mean horizontal wind

(m s21), yc is the mean horizontal wind in the clouds

(m s21), and F is the mean horizontal pressure gradient

force (per volume of total air) of the environment on the

clouds (Nm23). These bulk-plume equations have been

used in the literature for many decades: Eq. (2) traces

back to Eq. (7) in Schneider and Lindzen (1976), and

Eq. (3) traces back to Eq. (4) in Malkus (1952). A con-

cise derivation of both is given by Romps (2012b). The

starting point is to approximate the atmosphere as

comprising two homogeneous constituents: cloud and

environment. The derivation also assumes that clouds

occupy a small fractional area and that the clouds adjust

quickly to a steady state (Romps 2012b). In this limit of

small fractional area for clouds, the environmental ve-

locity is the same as the domain-averaged velocity y. In

the context of a general circulation model, we may think

of y as the resolved horizontal velocity and yc as the

unresolved horizontal velocity within convective clouds.

Since it is not known how to parameterize the pressure

gradient force between clouds and their environment,

wewill proceedwith a simplifying ansatz: wewill assume

that F}M(y2yc). This formulation assumes that the

force on a cloud is proportional to the relative velocity

of its environment and that the net force on all clouds

scales like the total cloud mass flux (i.e., a constant force

per cloud). The great benefit of this formulation is that

the right-hand side of Eq. (3) can be written as «(y2yc)

for some effective entrainment rate « that includes the

effects of both entrainment and the pressure gradient

force. Henceforth, we will drop the F/M term, which

reduces the bulk-plume equations to those applicable

to a passive tracer. Focusing on one component of the

horizontal wind, Eqs. (1)–(3) can be written as (Romps

2012b)

›ty(z)5
M(z)

r(z)

(
›zy(z)2 d(z)

ðz
z
0

dz0 exp
�
2

ðz
z0
dz00«(z00)

�
›z0y(z

0)

)
, (4)

where we have assumed that yc(z0) 5 y(z0). This equa-

tion gives the tendency of y(z) as a function of y(z0) for
all z0 2 [z0, z].

For constant « and d, and for (z2 z0)«� 1 (so that z0
can be treated as 2‘), this simplifies to

›ty(z)5
M(z)

r(z)

�
›zy(z)2 d

ðz
2‘

dz0 exp[2(z2z0)«]›z0y(z
0)
�
.

(5)

According to Eq. (5), an initial sinusoidal wind profile of

wavenumber m evolves in time as

y5 y0e
2t/t cos[m(z2wt)] , (6)

where the ascent speed w and Rayleigh damping time

scale t are given by

w52
M

r

�
12

d«

«21m2

�
and (7)

554 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 71



t5
r

M

«2 1m2

dm2
. (8)

Romps (2010) found that « and d are of similar magni-

tude for deep convection, which motivates making the

approximation of «5 d. This approximation is evaluated

in the following sections and is found to be satisfactory

for our purposes. Therefore, we replace d with « in the

expressions above to obtain

w52
M

r

m2

«21m2
and (9)

t5
r

M

«21m2

«m2
. (10)

Equations (9) and (10) are two of the main new results:

they give the descent and decay of unforced wind pro-

files as functions of vertical wavenumber and the con-

vective entrainment rate. These expressions exhibit a

rich dependence on « and m, as shown in Fig. 1. It is of

particular interest to note that, over a plausible range

of fractional entrainment rates (i.e., within an order of

magnitude of 1 km21), the damping time scale is pre-

dicted to lie largely in the range of 1–10 days.

To aid in summarizing Fig. 1, it is helpful to con-

sider Eqs. (9) and (10) in the limits of small and large

wavelengths—that is, for small and large l 5 2p/m.

For small wavelengths (l � 2p/«), the profile experi-

ences strong descent (jwj ’ M/r ’ 1 cm s21) and strong

damping (t ’ r/M«’ 1 day, assuming «’ 1 km21). For

large wavelengths (l � 2p/«), the profile experiences

weak descent (jwj �M/r) andweak damping (t� r/M«).

These results are summarized in Fig. 2.

Small and large wavelengths also differ in terms of the

relative importance of damping and descent. To see how,

note that jwjt is the vertical distance a profile descends

in the time it takes to damp by an e folding. Therefore,

jwjtm/2p is the number of wavelengths that the profile

descends during an e folding. Using Eqs. (9) and (10),

this expression simplifies, yielding

Number of l descended in an e-folding5
1/«

l
.

In other words, the ratio of l and 1/« indicates the relative

strength of damping versus descent. Small-wavelength

profiles descend many wavelengths with little damping,

while large-wavelength profiles mostly damp in place.

This is the result that one would get by assuming that the

damping rate and descent speed do not depend on wave-

length. Here, we see that the damping rate and descent

speed do depend on the wavelength, but their ratio does

not, which leads to the same conclusion of ‘‘small wave-

lengths descend, long wavelengths damp.’’

Furthermore, for large wavelengths, the damping can

be approximated by a constant viscosity. For l � 2p/«,

Eqs. (9) and (10) reduce to w ’ 0 and t ’ r«/Mm2, re-

spectively. In this case, Eq. (6) is a solution to the diffusive

FIG. 1. (left) The damping time scale t and (right) the normalized descent speed jwr/Mj for
transient solutions as predicted by Eqs. (9) and (10) using M/r 5 1 cm s21.

FIG. 2. The dependence of descent speed jwj and damping time

scale t on the vertical wavelength l of profiles.
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equation ›ty5 n›2zy, where n 5 M/r« is the effective

kinematic viscosity. Using « 5 1 km21 and M/r 5
1–3 cms21, which is characteristic of the deeply convect-

ing tropics, we find that n 5 10–30m2 s21. Note that this

viscosity is about one order of magnitude larger than esti-

mates obtained for clear-air turbulence using radar (Wilson

2004) and radiosondes (Clayson and Kantha 2008).

Equations (9) and (10) also reveal an interesting de-

pendence of w and t on «. For small entrainment rates

(« / 0), profiles experience descent, but no damping,

as discussed by Mapes and Wu (2001). This can be un-

derstood from the fact that a low-entrainment cloud

exchanges very little mass with the environment as it

rises. Such a cloud may be visualized as a closed canister

rising through the atmosphere; its only impact on the

environment is to cause compensating subsidence. This

case, along with others, is depicted in Fig. 3. For large

entrainment rates («/ ‘), profiles neither descend nor

damp. This is a counterintuitive result: a cloud that is

interacting strongly with its environment has no impact

on the environmental profiles. This can be visualized as

a canister that has been opened at the top and bottom

allowing for rapid exchange of air between the envi-

ronment and the canister; this has no effect on the envi-

ronment because air simply passes through the canister

as it rises. Finally, for intermediate entrainment rates

(« ; m), convecting clouds cause profiles to both de-

scend and damp. This may be pictured as a canister that

is open at the top and has a small hole in the bottom. In

this case, the flow of air through the canister is impeded.

Since the canister is lifting air faster than the air can pass

through it, the environment must subside by mass con-

servation, leading to descent of profiles. In addition, air

picked up from the environment where a profile is maxi-

mal can reside in the canister long enough to be deposited

where the profile is minimal, and vice versa, leading to a

damping of profiles.

Up to this point, we have focused on the transient case

in which an initial wind profile is left to evolve under

the sole influence of convection. On the other hand, the

atmosphere is host to persistent forcings (e.g., as gen-

erated by variations in sea surface temperature) that

make a study of steady-state responses of interest as

well. To this end, we can calculate the steady-state re-

sponse to a time-independent acceleration of the form

a cos(mz), where a has units of meters per squared sec-

ond. In particular, we add this forcing to the right-hand

side of Eq. (5), set d 5 « as before, set the tendency to

zero, and seek a solution of the form

y5 y0 cos[m(z1Dz)] . (11)

The result gives expressions for y0 and Dz, which are

y05
at

[11 (m/«)2]1/2
and (12)

Dz5
1

m
arctan(m/«) . (13)

These equations make new predictions for the ampli-

tude and phase of forced wind profiles in the presence of

convection as functions of vertical wavenumber and

convective entrainment rate. Figure 4 plots the values of

y0/a and the phase Dzm as functions of wavelength and

entrainment rate. The ratio y0/a, which measures the

strength of the response to the forcing, is largest for large

wavelengths and large entrainment rates and is smallest

for small wavelengths and small entrainment rates. The

product Dzm, which measures the phase difference be-

tween the forcing and the response, is everywhere pos-

itive, signifying a response that is shifted down from

the forcing. Large wavelengths and large entrainment

rates favor a phase shift near zero, while small wave-

lengths and small entrainment rates favor a phase shift

near 908.
It is interesting to contrast the left panel of Fig. 4,

which shows the time scale y0/a for a steady-state wind

profile, with the left panel of Fig. 1, which shows the

damping time scale for a transient wind profile. For large

entrainment rates and large wavelengths (i.e.,m/«� 1),

the two time scales are very similar. For small entrain-

ment rates and small wavelengths, however, the steady-

state time scale is much smaller than the transient time

scale. How can this be? Let us imagine replacing the

continuous acceleration awith a sequence of impulses dy

spaced in time by dt such that dy/dt 5 a; in the limit of

small dt, this asymptotically approaches a constant ac-

celeration. We can then think of the steady-state solution

[Eq. (11)] as constructed from a sequence of sinusoidal

impulses that evolve according to Eq. (6). If these

FIG. 3. The dependence of descent speed jwj and damping time

scale t on the convective entrainment rate «.
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impulses simply damp in place, as they do for m/« � 1

(i.e., large entrainment rates and large wavelengths),

then the transient and steady-state time scales would be

identical. But, in addition to decaying, the impulses also

descend and, thereby, interfere destructively with im-

pulses applied at earlier and later times. For m/« � 1

(i.e., small entrainment rates and small wavelengths),

this destructive interference dominates the response. By

this mechanism, convection is able to damp winds very

quickly—with a time scale of less than a day—even for

small entrainment rates.

3. LES with tracers

We will use large-eddy simulations of steady-state

convection to test these theoretical predictions. The

cloud-resolving model used for these simulations is

Das Atmosph€arische Modell (DAM; Romps 2008). The

simulations use a doubly periodic domain (38.4 km 3
38.4 km3 30 km)with an isotropic grid spacing of 200m.

The lower boundary is a 300-K ocean surface with tur-

bulent enthalpy fluxes given by a bulk aerodynamic for-

mula with a constant drag coefficient of 1.5 3 1023 and

a constant wind speed of 5ms21. The simulations use in-

teractive shortwave and longwave radiative fluxes calcu-

lated using the Rapid Radiative Transfer Model (RRTM;

Clough et al. 2005; Iacono et al. 2008) with the top-of-

the-atmosphere insolation set to the diurnal average at

the equator on 1 January. The Coriolis force is omitted,

as is appropriate for circulations on the equator.

To evaluate the predictions of section 2, we begin by

studying the evolution of a sinusoidal tracer profile in

a deeply convecting atmosphere. For a passive tracer,

Eqs. (1)–(3) become

›zM5 («2 d)M , (14)

r›tq5 ›z[M(q2 qc)], and (15)

›zqc5 «(q2 qc) , (16)

where qc and q denote the mixing ratio of the passive

tracer in the cloud and environment, respectively. The

derivation of section 2 applies without alteration to tracers;

the relevant equations are obtained by the substitution

of q and qc for y and yc.

We first run a spinup simulation for several weeks

to reach radiative–convective equilibrium. The deep-

convective mass flux M in this simulation is character-

ized by a value of M/r ’ 1 cm s21, and it is associated

with a precipitation rate of about 2mmday21. We take

a 3D snapshot from the end of the spinup simulation and

add a passive tracer with q distributed as

q(x)5 q0 sin(mz) ,

where m is the wavenumber of the profile. The simula-

tion is then restarted from this state and run for 4 more

days. This is repeated with nine different values of m 5
2p/l with wavelengths of l 5 2, 3, . . . , 10 km. Wave-

lengths smaller than 2 km are not considered because

they are poorly resolved by a 200-m grid spacing. Wave-

lengths greater than 10km are not considered for two

reasons: their descent and damping are more difficult to

diagnose, and the approximation of « 5 d becomes worse

as the wavelength increases (see the discussion later in this

section).

Figure 5 shows Hovm€oller plots of horizontally aver-

aged q for three of these simulations. Time runs from left

to right along the abscissa with time beginning at the

moment that the simulation is restarted with the sinu-

soidal tracer profile. Height increases upward along the

ordinate, and the colors indicate the horizontal average

FIG. 4. (left) The amplitude y0/a and (right) downward phase shift Dzm for steady-state

solutions as predicted by Eqs. (12) and (13) using M/r 5 1 cm s21.
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of q. From left to right, the three panels show the results

with l5 2, 4, and 8 km. To aid the eye, the white dashed

lines in Fig. 5 track the temporal evolution of extrema in

the mean tracer profile.

Some qualitative features are easily noted from Fig. 5.

First, it is clear that the tracer profiles retain their sinu-

soidal shape in the troposphere but descend (i.e., w , 0)

as expected from Eq. (9). After 2 days, a sinusoid with

a best-fit phase explains 56% of the variance in the

2-km-wavelength profile (despite the fact that the ampli-

tude has all but vanished) and 96% of the variance in the

10-km-wavelength profile. Furthermore, it is clear that

the amplitudes of all the tracer profiles damp to zero

with time. In fact, it is clear from visual inspection that,

at day 4, the amplitude of the 8-km profile is greater than

the amplitude of the 4-km profile, which, in turn, is greater

than the amplitude of the 2-km profile. This is strong

evidence that the damping time scale increases with

wavelength, which is in agreement with Eq. (10).

To make a more quantitative comparison with the the-

ory of section 2, we will first need to diagnose an effective

entrainment rate from the large-eddy simulation. For

this, we use Eq. (16) to obtain

«5
›zqc
q2 qc

, (17)

where qc is the mass-flux-weighted mixing ratio in the

cloudy updrafts and q is the mean mixing ratio over the

entire domain. Here, we define cloud updrafts as air with

a vertical velocity greater than 1m s21 and a condensate

mass fraction greater than 1025 kg kg21 (Romps and

Kuang 2010). Since qc and q are easily measured in the

LES, « is straightforward to diagnose, in principle. In

practice, however, some precautions must be taken. First,

we must average over a sufficiently long time to obtain

a robust sampling of the convective ensemble. Second,

we must average over a sufficiently short time to avoid q

and qc from changing substantially during the averaging

period. To satisfy these two criteria, averages are taken

over the first 6 h of the simulations (minus the first half

hour to allow the clouds to adjust their tracer concen-

trations). Third, the bulk-plume model assumes that

›zqc5 0 when q2 qc5 0, which prevents the right-hand

side of Eq. (17) from being singular. In reality, convec-

tion does not behave exactly like the bulk-plume equa-

tions, so the right-hand side, as diagnosed from LES, is

generally singular at the roots of q2 qc. Since the profile

of every tracer is sinusoidal, the profile of «, as calculated

from any one tracer, has singularities. Therefore, we

calculate a composite profile of the entrainment rate as

follows: defining «i(z) as the entrainment rate from tracer

i at height z calculated from Eq. (17), we define the

composite «(z) as the average of «i(z) over only those i

for which jqi 2 qicj. 0:3q0. The resulting «(z) is shown in

Fig. 6 as the thin black line. Between the cloud base

(500m) and 10 km, the fractional entrainment rate lies

in the range of about 0.2–0.8 km21; the average in that

height range is 0.4 km21. The thick red line is the least

squares fit of a quadratic function to the curve between

500m and 10 km; this curve will be used in the analysis

that follows. The dotted blue line is the detrainment rate

calculated using Eq. (1), where M is the mass flux of

cloudy updrafts.

Several approximations were made in section 2 lead-

ing up toEqs. (9) and (10), andwe can use the LES results

to check them. The first approximation was the implicit

assumption that the bulk-plume equations are an ade-

quate description of convection. It is known, for example,

that the bulk-plume equations suffer from the as-

sumption of homogeneity within clouds and the envi-

ronment (Romps 2010; Dawe and Austin 2011a,b). Of

FIG. 5. Hovm€oller plots for profiles of passive tracers with wavelengths equal to (left) 2, (middle) 4, and (right) 8 km.
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the bulk-plume equations [Eqs. (14)–(16)], only Eq. (15)

provides a testable prediction; Eqs. (14) and (16) simply

define the effective « and d. In the first column of Fig. 7,

the prediction for ›tq made by Eq. (15) is shown as the

blue curve for the tracers with wavelength 2 (first row),

4 (second row), and 8 km (third row). These predictions

for ›tq are calculated using values of M, q, and qc di-

agnosed directly from the LES. The black curves show

the actual tendency of q. Up to a height of 10 km, the

agreement between Eq. (15) and the actual ›tq is ex-

cellent. Above 10km, deep-convective plumes are de-

training, leading to downdrafts fromovershooting plumes

and clear-air turbulence that are not accounted for in the

bulk-plume theory.

Next, we can validate the tracer version (i.e., y/ q) of

Eq. (4). Note that there is no yc (qc) in this equation; it

gives the tendency in terms of onlyM, «, and the profile

y (q). In that equation, d is not an additional input; it is

defined in terms of M and « via Eq. (1). For this test,

M(z) and q(z) are diagnosed as before, and «(z) is given

by the quadratic fit shown in Fig. 6. The resulting pre-

diction for ›tq is shown as the blue curves in the second

column of Fig. 7. Once again, the match with the actual

tendency, shown by the black curves, is excellent below

10 km. In fact, the result is almost identical to the first

column, in which the LES-diagnosed qc was used. This

confirms that the composite entrainment rate in Fig. 6 is

correct.

Another approximation used in section 2 is that « and

d are constant and equal. From glancing at Fig. 6, it would

appear that « 5 d is a poor approximation. Sometimes,

however, looks can be deceiving. To quantify when «5 d

qualifies as a ‘‘good’’ approximation, consider Eqs. (7)

and (8), which can be Taylor expanded to first order in

d2 « to give

w52
M

r

m2

«21m2

h
12

«

m2
(d2 «)

i
and

t5
r

M

«21m2

«m2

�
12

1

«
(d2 «)

�
.

These expressions differ from Eqs. (9) and (10) by the

extra terms proportional to d 2 «. Therefore, the ap-

proximation of « 5 d is good so long as two conditions

hold: jd 2 «j � m2/« and jd 2 «j � «. Note that the

former inequality becomes increasingly stringent as the

vertical wavelength of the profile increases; this is one of

the reasons why we do not consider wavelengths greater

than 10 km. To see if we are in danger of violating these

inequalities, let us consider the largest wavelength in this

study (i.e., 10 km). With « 5 0.4 km21 (the mean value

diagnosed from Fig. 6), these conditions require that

jd2 «j be smaller thanm2/«5 1.0 km21 and «5 0.4 km21.

With the exception of the melting line, where d exceeds

« by as much as 0.6 km21, these conditions are obeyed.

Therefore, it is reasonable to make the approximation of

« 5 d.

As for the approximation of constant « and d, themost

direct way to assess this is to evaluate the resulting

prediction for ›tq. The third column of Fig. 7 shows the

prediction from Eq. (4) with « 5 d 5 0.4 km21. The

quality of thematch between the theory and the LES has

degraded somewhat, and this appears to be due to the

inconsistency generated by the simultaneous use of « 5
d (which would imply constantM) and the actual height-

dependentM. This is largely remedied by replacingM/r

with its mean value of 0.9 cm s21 between cloud base and

10 km. As shown in the fourth column of Fig. 7, this

significantly improves the agreement with the LES be-

low 10 km, although it leads to erroneous predictions in

the stratosphere, where there is no convection. These

results confirm the appropriateness of the approxima-

tions made in section 2.

Finally, we can directly compare damping and descent

rates in the LES to the predictions made by Eqs. (9) and

(10). The descent speed is calculated as the change in Dz
over the 5.5 h, whereDz is the distance that gives the best
correlation between sin[m(z 1 Dz)] and the q profile of

wavenumber m for z 2 [0.5, 10] km. The damping time

scale is calculated as 5.5 h divided by the fractional

FIG. 6. The entrainment rate (thin black), the quadratic fit to

the entrainment rate (thick red), and the detrainment rate (dotted

blue) diagnosed from the bulk-plume equations and the tracer

simulations.
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change in the integral from 0.5 to 10kmof sin[m(z1Dz)]
times q. (Nearly identical damping time scales are ob-

tained by using the fractional change in the integral of

jqj.) These results are plotted as the connected circles in

Fig. 8. Equations (9) and (10) are plotted as the solid

curves using the values of M/r 5 0.9 cm s21 and « 5
0.4 km21 diagnosed from the LES. We see that the

theory successfully predicts the order of magnitude of

the damping time scale and descent speed, and it cor-

rectly predicts an increase in damping time scale and

a decrease in descent speed with wavelength. Of course,

the quantitative agreement in Fig. 8 is certainly not perfect,

and this is to be expected given the many approximations

used in section 2 to arrive at an analytical theory. The

sensitivity to the integration time can be tested by using,

in place of 5.5 h, integration times as small as 1.5 h and as

large as 2 days, both of which yield similar results. In

addition, similar agreement between the LES and the-

ory is obtained by tracking the decay and descent of

individual extrema in the profiles, although this makes

the LES results noisier.

4. LES with wind

These results have been for passive tracers, but what

about wind? Since the pressure gradient force has been

FIG. 7. Validation of Eqs. (2) and (4), and of the approximations of constant « 5 d and constant M/r. The black

curve plots the actual ›ty of the tracer in the LES with wavelength equal to (top) 2, (middle) 4, and (bottom) 8 km.

The blue curve plots the prediction for ›ty given by (first column) Eq. (2), (second column) Eq. (4) using the parabolic

fit to «, (third column) Eq. (4) using a constant «5 d5 0.4 km21, and (fourth column) Eq. (4) using a constant «5 d

and a constant M/r.
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folded into an effective entrainment in the derivation of

Eqs. (9) and (10), it is not clear a priori how successful

these equations might be in predicting the evolution of

wind profiles. To test this, we take a 3D snapshot from

the end of the spinup simulation and add a sinusoidal

perturbation to the y component of the wind,

y(x)/ y0(x)5 y(x)2 y(z)1 y0 sin(mz) ,

where an overbar denotes an average over x and y, and

y0 5 1m s21. This replaces the mean wind profile y(z)

with a sinusoidal wind profile y0 sin(mz) without affect-

ing the cloud-scale circulations. The simulation is then

run for 4 days of model time, and this experiment is re-

peated nine times for vertical wavelengths ranging from

2 to 10km in 1-km increments.

Since the applied wind profiles have a small amplitude,

the strength, depth, and organization of the convection

is largely unaffected by the different wind profiles. There-

fore, we can interpret these simulations as the same state

of convection operating on nine different wind profiles.

Figure 9 shows the Hovm€oller plot for the wind profiles

with wavelengths equal to 2, 4, and 8 km. As with the

tracers, the wind profiles retain their sinusoidal shape

while descending in the troposphere. After 2 days, a si-

nusoid with a best-fit phase explains 56% of the variance

in the 2-km-wavelength profile and 97% of the variance

in the 10-km-wavelength profile. Furthermore, it is clear

that the damping rate and descent speed both decrease

as wavelength increases, as predicted by the theory in

section 2. To be more quantitative, however, we will

need to repeat the analysis of the previous section.

Since, for wind, the effective entrainment describes

the combined effects of entrainment and pressure, we

should expect to diagnose a larger entrainment rate

from

FIG. 8. (left) Damping time scale and (right) descent speed for sinusoidal tracer profiles as

functions of wavelength as calculated from the LES (circles) and from the theory (solid curve).

The theoretical predictions are calculated from Eq. (10) for the left panel and Eq. (9) for the

right panel using M/r 5 0.9 cm s21 and « 5 0.4 km21.

FIG. 9. As in Fig. 5, but for wind.
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«5
›zyc
y2 yc

(18)

than we obtained with passive tracers in Eq. (17). As in

the previous section, means are taken from the first 6 h

(minus the first half hour to allow the clouds to adjust

their horizontal winds). Constructing a composite en-

trainment profile from Eq. (18), we obtain the entrain-

ment rate shown in Fig. 10. The entrainment rate is

significantly larger than that in Fig. 6, with the profile

mostly exceeding 1 km21 between cloud base and 10 km.

Themean of the entrainment profile between cloud base

(500m) and 10 km is 1.5 km21, compared with 0.4 km21

for the passive tracers.

As before, «5 d is a good assumption if jd2 «j �m2/«

and jd2 «j � «. For «5 1.5 km21, the former inequality

is the more restrictive, requiring jd 2 «j � 0.2 km21 for

a wavelength of 10 km. In Fig. 10, it is clear that this is

satisfied everywhere between cloud base and 10 km,

except near 5 km.

Figures 11 and 12 repeat the analyses of the previous

section. In Fig. 11, we see that Eq. (4) does an excellent

job of matching the actual tendencies, even with the

assumptions of constantM/r and constant «5 d. Figure 12

compares the damping time scale and descent speeds

diagnosed from the LES and predicted by the theory. It

is worth repeating that the many approximations used in

the derivation of Eqs. (9) and (10) limit their quantita-

tive accuracy. Nonetheless, we see that the theory of

section 2 predicts the correct order of magnitude for the

damping time scale and descent speed, as well as the

increase in damping time scale and decrease in descent

speed with increasing wavelength.

5. Summary and discussion

In toy models of atmospheric circulations, Rayleigh

damping serves as a convenient sink for free-tropospheric

momentum, and its physical origins are usually attrib-

uted to moist convection. Rayleigh damping eliminates

momentum on a fixed time scale—regardless of the shape

of the wind profile—and it does not cause wind profiles

to descend. In contrast, the theory developed here pre-

dicts that convection causes profiles of mass and momen-

tum to both descend and damp with profile-dependent

rates. Profiles dominated by large vertical wavelengths

descend and damp slowly, while profiles dominated by

small vertical wavelengths descend and damp quickly.

This theory is summarized mathematically by Eqs. (9)

and (10) for the evolution of unforced wind profiles and

by Eqs. (12) and (13) for forced wind profiles.

The theory predicts that the descent speed ofmass and

wind profiles are always less than or equal to that of

compensating subsidence; see Eqs. (7) and (9) and the

right panel of Fig. 1. This is confirmed by large-eddy

simulations; see the right panels of Figs. 8 and 12. The

theory also predicts that the damping time scales for

mass and wind profiles with a 2–10-km vertical wave-

length are in the ballpark of 1–10 days for rain rates

typical of tropical RCE; see the left panel of Fig. 1. This

is confirmed by large-eddy simulations; see the left panels

of Figs. 8 and 12. Large-eddy simulations also confirm

that long vertical wavelengths damp slower (see left

panels of Figs. 8 and 12) and descend slower (see right

panels of Figs. 8 and 12) than short vertical wavelengths.

A counterintuitive result of this theory is that highly

entraining convection has no impact on profiles of tracers

or wind. Physically, this occurs because a very large

entrainment rate in Eq. (3) forces the cloud properties to

be nearly identical to those of the environment (i.e.,

y2yc 5 0 in that equation), and this leads to zero eddy

fluxes in Eq. (2). Conceptually, we may think of a highly

entraining cloud as an open canister, as pictured in the

middle panel of Fig. 3: environmental air passes right

through the cloud, leading to neither damping nor de-

scent of environmental profiles. Mathematically, we can

see this effect in Eqs. (9) and (10): both the damping

rate 1/t and the descent speed w go to zero as « goes to

infinity.

The analytical theory presented here is derived with

the aid of many approximations, including the use of the

bulk-plume equations. For the convective transport of

horizontal momentum, the pressure gradient force has

FIG. 10. As in Fig. 6, but for wind.
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been approximated here as an effective entrainment.

Consequently, the effective entrainment rate diagnosed

from the evolution of wind profiles is almost 4 times

larger than the entrainment rate diagnosed from the

tracer profiles (i.e., 1.5 km21 compared to 0.4 km21).

This indicates a significant role for the pressure gradient

force in convective momentum transport.

In a previous study by Romps (2012b), it was found

that narrow jets move vertically at a speed of2M/r (i.e.,

the speed of compensating subsidence). The theory de-

rived here provides an explanation for that behavior.

FromEq. (9), we see that the descent speed goes to2M/r

in the limit of largem. Since Romps (2012b) was injecting

momentum in a single vertical layer, that study was op-

erating well within the large-m limit. That study also ar-

gued in favor of modeling the pressure gradient force as

F }y2yc (i.e., as an effective entrainment) instead of

the proposal by Gregory et al. (1997) to model the

pressure gradient force as F } ›zy. The success found

here in treating pressure as an effective entrainment

lends support to the approach, although further study of

the pressure gradient force is needed before a definitive

formulation can be reached.

The vertical wavelengths studied here range from 2 to

10 km. As discussed in section 3, this range is limited

by the inability of the large-eddy simulation to resolve

significantly smaller wavelengths and the expected de-

viations from theory and the difficulty of designing di-

agnostics for significantly larger wavelengths. Nevertheless,

the results obtained for this range of wavelengths are

immediately applicable to a variety of problems, in-

cluding the evolution of the stacked shallow circulations

often seen in cloud-resolving simulations of a Walker

cell; see, e.g., Fig. 4a of Blossey et al. (2010), the third

FIG. 11. As in Fig. 7, but for wind, and with « 5 d 5 1.5 km21 in the third and fourth columns.
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panel of Fig. 1 in Romps (2012a), Figs. 6c, 7c, and 8c of

Grabowski et al. (2000), and Figs. 4b and 5 of Bretherton

et al. (2006). It is also hoped that this theory could be

used to prescribe the momentum damping in the ver-

sions of the weak pressure gradient approximation that

use Rayleigh damping (e.g., Raymond and Zeng 2000;

Kuang 2008; Blossey et al. 2009; Kuang 2011; Romps

2012c,a).
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