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Abstract Convective entrainment is a process that is poorly represented in existing convective parame-
terizations. By many estimates, convective entrainment is the leading source of error in global climate mod-
els. As a potential remedy, an Eulerian implementation of the Stochastic Parcel Model (SPM) is presented
here as a convective parameterization that treats entrainment in a physically realistic and computationally
efficient way. Drawing on evidence that convecting clouds comprise air parcels subject to Poisson-process
entrainment events, the SPM calculates the deterministic limit of an infinite number of such parcels. For
computational efficiency, the SPM groups parcels at each height by their purity, which is a measure of their
total entrainment up to that height. This reduces the calculation of convective fluxes to a sequence of
matrix multiplications. The SPM is implemented in a single-column model and compared with a large-eddy
simulation of deep convection.

1. Introduction

Within the climate-modeling community, there is a widely recognized and urgent need to improve repre-
sentations of convective entrainment [e.g., Hirota et al., 2014]. According to several studies, the convective
entrainment rate, when varied over its range of uncertainty, is the one parameter that exerts the most influ-
ence on a global climate model’'s (GCM'’s) climate sensitivity [Knight et al., 2007; Sanderson et al., 2008;
Rougier et al., 2009; Klocke et al., 2011]. In addition, studies have documented how different choices of the
entrainment rate have dramatic influences on atmospheric humidity [Siebesma and Holtslag, 1996], cloud
cover [Jakob and Siebesma, 2003], patterns of precipitation [Chikira, 2010], radiative fluxes [Held et al., 20071,
intraseasonal variability [Tokioka et al., 1988], and interseasonal variability [Watanabe et al., 2011].

Current convective parameterizations rely on a variety of ad hoc choices to represent entrainment. Some of
these choices, such as the common use of a single entraining updraft [e.g., Kain and Fritsch, 1990; Zhang
and McFarlane, 1995], were made for reasons of algorithmic simplicity and computational efficiency. Other
choices, such as the use of an adiabatic plume rising through the depth of the troposphere [e.g., Raymond
and Blyth, 1986; Emanuel, 1991], were made for lack of observations or large-eddy simulations to contradict
them. In the past several years, however, much has been learned about convective entrainment, including
insights on the important role of heterogeneous updraft properties in tracer transport [Lawrence and Rasch,
2005; Romps, 2010] and the dearth of undiluted deep convection in cloud-resolving simulations [Kuang and
Bretherton, 2006; Fierro et al., 2009; Romps and Kuang, 2010al.

A particularly useful insight, which motivates the scheme described here, comes from the work of Romps and
Kuang [2010al. In that study, a “purity” tracer was used to study entrainment in a large-eddy simulation of
deep convection. The purity tracer is a passive tracer within convecting clouds, but it has sources and sinks
elsewhere that maintain its mixing ratio ¢ at one in the subcloud layer and zero in the nonconvecting parts of
the free troposphere. The purity ¢ of an updraft, therefore, records the fraction of the updraft’s dry air mass
that came directly from the subcloud layer. Romps and Kuang [2010a] showed that the mass flux of “undi-
luted” updrafts (defined as updrafts with a purity above 0.8) decays exponentially with height. This was
explained as updrafts being subjected to Poisson-process mixing events generated by the turbulent flow. In
particular, if each parcel of updraft air has a probability dz/A of becoming diluted by entrainment every dis-
tance dz that it ascends, then the undiluted mass flux will decay with height with an e-folding distance of /.
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Romps and Kuang [2010b] put this insight to work by developing the Stochastic Parcel Model (SPM), which
we will refer to as the Lagrangian implementation of the SPM (LSPM) when we need to differentiate it from
the scheme developed here. In the LSPM, convection is simulated by a large collection of Lagrangian par-
cels that entrain stochastically. Each parcel evolves in time according to a coupled set of ordinary differen-
tial equations governing its height, volume, vertical velocity, water content, etc. Each parcel is simulated in
isolation, but is subjected to Poisson-process entrainment events that are calculated using a Monte Carlo
method. The integration of each parcel’s history is halted once the parcel has reached its own unique level
of neutral buoyancy. By simulating many of these parcels (all with the same initial conditions), and then by
summing their contributions to the convective mass flux at each height, the LSPM predicts a profile of net
convective mass flux. In Romps and Kuang [2010b], this scheme was compared against a large-eddy simula-
tion of shallow convection and it performed admirably, showcasing its ability to replicate both the means
and variances of updraft properties.

Despite this success, the LSPM is not well suited to be a convective parameterization: depending on the
number N of parcels simulated, the LSPM is either too computationally expensive (large N) or too noisy
(small N). Because convective mass fluxes are obtained by averaging over the N parcels, each of which has a
history determined by stochastic entrainment, Romps and Kuang [2010b] had to simulate millions of Lagran-
gian parcels to obtain distributions of cloud properties that were suitably converged. If implemented as a
deterministic convective parameterization in a global climate model (GCM), a comparably large number of
these parcel integrations would need to be performed for every time step and grid column, thereby increas-
ing the computational expense of a GCM by an unacceptable amount.

With the LSPM, the only alternative is to accept a large amount of stochastic noise in the convective tenden-
cies for each time step and grid column. This is the approach taken by Nie and Kuang [2012a] and Suselj
et al. [2013]. In Nie and Kuang [2012a], the LSPM was used to simulate a spatially uniform case of shallow
convection using N = 150 parcels per time step and grid column. In the Eddy-Diffusivity/Mass-Flux (EDMF)
model of Suselj et al. [2013], the MF part of EDMF is replaced with an N = 10 LSPM. By averaging over a suffi-
cient number of time steps and/or a sufficient number of nearby grid cells, the LSPM can produce nearly
deterministic mean profiles of cloud properties despite using such small values of N. But the behavior in
any given GCM column for any given time step will be highly stochastic. Although schemes that add sto-
chastic noise to GCMs are currently in vogue, the noise generated by the LSPM with a small N is neither
intentional nor desirable: this noise stems from the unintentional underresolving of the distribution of prop-
erties within turbulent clouds, and the stochastic forcing that this adds to the GCM is an undesirable func-
tion of both GCM grid size and time step.

This paper presents an implementation of the SPM that approximates the deterministic N — oo limit in a
computationally efficient way. When we need to differentiate this from the LSPM, we will refer to this as the
Eulerian implementation of the SPM (ESPM). When there is no risk of confusion, we will refer to either one
as “the SPM” since the LSPM and ESPM are just two ways of calculating the same thing: the LSPM was
intended by Romps and Kuang [2010b] to be operated in the large-N limit and the ESPM developed here
approximates that large-N limit.

The ESPM approximates the large-N limit by taking advantage of the fact that updraft properties are well
correlated with purity. For shallow convection, this correlation can be seen from Romps and Kuang [2010b,
Figures 3 and 4, right], which show that, at a given height, about 90% of the variance in updraft buoyancy is
explained by updraft purity. Figure 1 in this paper shows the profiles of R? between purity and three quanti-
ties—uvertical velocity w, temperature T, and total water mass fraction g—in updrafts in a large-eddy simu-
lation of deep convection, which will be described in section 8. Through most of the troposphere, about
50%-80% of the variance in these quantities is explained by the purity alone. The biggest exception is the
R? between temperature and purity in the upper troposphere, which dips to zero before rebounding to
high values. This kink in the T-¢ R? profile is not really a failure of purity to capture variability, but a switch
from a positive correlation to a negative correlation. Below the height of zero R?, updrafts are warmer than
their surroundings, so temperature and purity are positively correlated (i.e., entrainment reduces both purity
and temperature). Above the height of zero R?, updrafts are overshooting and, therefore, colder than their
surroundings, so temperature and purity are negatively correlated (i.e., entrainment decreases purity, but
increases temperature).
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These results suggest that the
properties of deep convection
can be adequately described by
functions of height z and purity
¢. To visualize this, consider
Figure 2 (left), which shows the
¢(z) history for each parcel of
an LSPM (depicted as N=4
to avoid clutter). Next, imagine
discretizing the height-purity
domain, as shown, and then
averaging parcel properties
within each cell. Since variations
in purity explain most of the
variations in other parcel prop-
erties, averaging the parcel
properties within each cell
greatly reduces the dimension-
0.0 0.2 0.4 0.6 0.8 1.0 ality of the output from the

R2 LSPM while still preserving
most of the information con-
tent. This output consists of

15

10

Height (km)

Figure 1. For convective updrafts in a large-eddy simulation of radiative-convective equilib-
rium, profiles of R? between purity ¢ and (blue solid) vertical velocity w, (red dashed) tem-

perature T, and (black dot-dashed) total water mass fraction g,. Note that purity explains several matrices, which are dis-
about 50%-80% of the variance through most of the troposphere. See the text for an expla- cretized functions of ¢ and z

nation of the dip in the T-¢ R? profile.
P oRp For example, we define one

function as the extensive quan-
tity M(¢,z) such that M(¢,z) d¢ is the mass flux (kg m~2 s~") at height z of updrafts with purity between
¢ and ¢+d¢. We can also define a variety of intensive quantities such as the temperature T(¢,z) and the
specific humidity g, (¢, z). The ESPM treats these matrices as a complete description of the convection, and
the ESPM generates these matrices for the N — oo limit by performing Eulerian calculations directly on this
¢-z grid rather than mapping Lagrangian parcels to the grid and then averaging.

The ESPM operates by first specifying a closure for the updraft distributions (i.e., M, T, g,, etc. as functions
of ¢) at the lowest model level above the surface. As we will see in section 5, it is straightforward to formu-
late a closure for this purpose that is both simple and physical. The more challenging step is calculating the
fluxes between cells of the discretized ¢-z grid (see Figure 2, right) in a way that is consistent with Poisson-
process entrainment. The bit of magic is that this can be done semianalytically, reducing the problem to
matrix multiplication. The resulting matrix operations can be efficiently performed on a computer, making
the ESPM suitable for implementation in global climate models.

2. The SPM in Words

The SPM is a parameterization of ascending convective parcels. While many convective parameterizations
include downdrafts, studies using large-eddy simulations have found that downdrafts are not very preva-
lent [Lin and Arakawa, 1997; Heus et al., 2008; Boing et al., 2014] and even the impact of downdrafts on the
thermodynamics of the subcloud layer is weak [Thayer-Calder and Randall, 2015]. Arguably the most impor-
tant effect of downdrafts is their generation of cold pools, which generate thermodynamic variance in the
boundary layer [Tompkins, 2001; Zuidema et al., 2012], trigger new convection through mechanical forcing
[Jeevanjee and Romps, 2015; Torri et al., 2015], make wide updrafts capable of convecting deeply [Khairoutdi-
nov and Randall, 2006; Boing et al, 2012], and even prevent convective self-aggregation [Jeevanjee and
Romps, 2013]. For simplicity, however, downdrafts and cold pools are ignored in the simple closure used
here, which is described in section 5.

The Eulerian implementation of the SPM generates a set of matrices that describe the ensemble of ascend-
ing parcels at a given location (e.g., GCM grid column) and a given time (e.g.,, GCM time step). The rows and
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Figure 2. (left) The Lagrangian trajectories, shown by arrows in ¢-z space, that are calculated by the LSPM. (right) The Eulerian fluxes,
shown by arrows in ¢-z space, that are calculated by the ESPM.

columns of these matrices correspond to height and purity, respectively. The rows represent heights that, in
a typical application, are chosen to range from the surface to the lower stratosphere; these are the heights
at which the mass fluxes are defined. The columns correspond to adjacent, nonoverlapping bins covering a
dimensionless interval from zero to one; each of these bins defines the purity of the parcels within that col-
umn. The SPM generates one matrix for the extensive quantity of mass flux and several matrices for the var-
ious intensive quantities such as moist static energy, specific humidity, and vertical velocity.

For example, an element of the mass-flux matrix M gives the updraft mass flux per purity interval (i.e., d[mass
flux]/0¢) within the corresponding purity range (defined by the column) and at a specific height (defined by
the row). A row of the M matrix gives the distribution of mass flux per purity interval at a given height. A col-
umn of the M matrix gives the vertical profile of mass flux within that particular purity range. Similarly, an ele-
ment of the vertical velocity matrix w gives the vertical velocity of parcels at the chosen height and purity
range; a row of w gives the vertical velocity of parcels as a function of purity at that height; and a column of w
gives the vertical profile of parcel vertical velocity within the corresponding purity range.

Schematically, these matrices are calculated as depicted in Figure 3. First, a closure scheme (described in sec-
tion 5) is chosen to initialize the first row of all the matrices. This specifies the mass flux and intensive proper-
ties of the parcels at a height near the surface. Since parcels begin with unit purity, only the last element of
the first row of each matrix needs to be defined by the closure, as shown in step 1 of Figure 3. In other words,
the closure needs only to specify the mass flux and intensive properties of a single bulk plume near the sur-
face, and this information gets populated into a single element of each matrix. The other elements of the first
row of the M matrix are set to zero. The other elements of the first row of the intensive matrices need not be
defined because the mass flux is zero there; matrix elements that are undefined (either because the mass flux
is zero or because they are in a row that has not yet been calculated) are shaded grey in Figure 3.

In step 2, the second row of each matrix is populated from the data in the first rows of the matrices using
the physical processes of adiabatic ascent, Poisson-process entrainment, and detrainment of negatively
buoyant parcels. The equations describing these calculations are given in sections 3 and 4, and the numeri-
cal implementation is given in Appendix A. If the probability of an entrainment event between the first and
second rows is 30% (i.e., dz//. = 0.3), then 30% of the convecting parcels experience entrainment and move
to lower-purity bins, i.e., they populate the other columns. In step 2 of Figure 3, we see that some of the
mass flux has, indeed, moved to a lower-purity bin. The MSE of that bin is lower than the MSE of the ¢=1
bin because those parcels have entrained environmental air with a lower MSE. Next, if a purity bin has nega-
tive buoyancy, then parcels in that bin are detrained, which is accomplished by diverting mass flux from
that bin into the environment, thereby reducing the bin’s mass flux. This is consistent with the concept of
buoyancy sorting [Telford, 1975; Taylor and Baker, 1991], with detrainment of negatively buoyant parcels
and the continuing ascent of positively buoyant parcels.

In subsequent steps, this procedure simply repeats. Since an individual parcel can move only upward in
height to lower-purity values, the matrix elements in row i and column j depend only on the elements in
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Figure 3. A cartoon illustration of a numerical integration of (left) the mass-flux matrix M and (right) the moist-static-energy matrix h. Dark
blue denotes matrix elements with high values, light blue denotes low values, and grey denotes undefined matrix elements. In this exam-
ple, there are five purity bins and five height bins. In step 1, the closure specifies the distribution of mass flux in the ¢=1 bin at the first
height level and the value of moist static energy there. In step 2, the distribution of mass flux and moist static energy at the second height
level are calculated from the distributions at the first level by subjecting them to adiabatic ascent, Poisson-process entrainment, and
detrainment of negatively buoyant parcels. Proceeding in this way, step 3 calculates the distributions at the third height from the distribu-
tions at the second height, and so on.

row i — 1 and columns j to Ng, where Ny is the total number of columns. Furthermore, as in the original
LSPM, the parcels are assumed to be noninteracting. This simplifies the equations and the resulting discreti-
zation because it implies that the parcel properties in row i are linear functions of the parcel properties in
row i — 1. Therefore, as shown in Appendix A, each row i of mass-flux matrix M is calculated by multiplying
row i — 1 of M by an appropriately defined matrix, and similarly for all of the intensive matrices. Therefore,
this new Eulerian implementation of the SPM reduces a computationally daunting challenge—calculating
the infinite spectrum of parcels generated by Poisson-process entrainment events—to a series of computa-
tionally efficient matrix multiplications.

Once these matrices have been constructed, the total updraft mass flux at each height (i.e., at each row) is
given by a weighted sum over the columns of M, where the weights are the sizes of the purity bins (recall
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that each element of M is the differential mass flux per differential purity interval). The profile of convective
MSE flux is given by taking the Hadamard product (i.e., the entrywise product) of mass-flux matrix M and
MSE matrix h and then taking the weighted sums over the columns, again weighting by the sizes of the
purity bins. In this way, the total convective flux of any quantity can be calculated. By taking the vertical
derivative of these flux profiles, we obtain tendencies that can be fed back to a GCM.

It is important to emphasize that the Stochastic Parcel Model is deterministic. It is currently popular to add
intentional random noise to parameterizations for GCMs, and these schemes are often referred to as “sto-
chastic.” The SPM, while it has “stochastic” in its name, is not one of those schemes. The SPM is a model of
convecting parcels that entrain stochastically, but the matrices and tendencies produced by the SPM
describe the deterministic N — oo limit of N such parcels.

Finally, note that the ESPM is not a spectral-plume model. There is some risk of confusion on this point
because the output of the ESPM is given by matrices on axes of z and ¢ (which quantifies entrainment),
while the output of a spectral-plume model [e.g., Arakawa and Schubert, 1974] can be represented by matri-
ces on axes of z and the fractional entrainment rate (which distinguishes between the different plumes).
Any similarities, however, end there. In a spectral-plume model, all of the convective variability is baked into
the lowest level, where the mass flux for each entraining plume is set by a CAPE-like closure; in the ESPM,
there is zero convective variability at the lowest level. In a spectral-plume model, the mass-flux profile is
defined by the CAPE-like closure imposed at the cloud base; in the ESPM, the mass-flux profile is deter-
mined by buoyancy sorting in the free troposphere. In a spectral-plume model, each plume evolves in
height in a completely deterministic fashion; in the ESPM, each parcel evolves in height in a completely sto-
chastic fashion. In a spectral-plume model, each column of a matrix corresponds to a single plume, so each
column can be calculated independently; in the ESPM, parcels move between columns (as they entrain and
change their purity), so it is impossible to calculate a single column in isolation.

3. Mathematical Formulation

Let M(¢, z) d¢ be the flux of mass at height z with purity in the range of [¢, ¢ +d¢]. From height z to height
z+dz, the fraction of the mass flux that experiences entrainment is dz/A. Therefore, the change in
M(¢,z) d¢ due to parcels with purity in [¢, p+dd] entraining is —M(¢,z) d¢ dz/ 4. This is an entrainment
sink for M(¢, z) d¢. There is also an entrainment source for M(¢, z) d¢, which is caused by mass flux with
¢’ > ¢ entraining just the right amount of environmental air to have a new purity in [¢, ¢p+d¢]. This calcu-
lation is the trickiest part of the ESPM'’s formulation, so we will go through the logic step by step here.

Consider a parcel of air with purity ¢ that entrains environmental air with zero purity. Let us denote by
 the ratio of the entrained mass of environmental air to the parcel’s initial mass. We will call y the entrain-
ment fraction. After it entrains, the parcel has a new purity ¢ given by

/
¢= 1?7 ' (M
We can solve this equation for 7 in terms of ¢’ to get
/
P %_1 , @

In other words, for air with purity ¢', equation (2) gives the entrainment fraction needed to generate air
with purity ¢. Let us denote by f(y)dy the probability that, in an entrainment event, the entrainment frac-
tion will lie within [y, x+dy]. The function f will be set to an exponential distribution in a moment, but it can
be left arbitrary for now. For a parcel with purity ¢’ that entrains, the probability that the parcel’s new purity
will lie within [¢, +d¢] is

o
a9
Alternatively, we can think of this as the fraction of the entraining mass flux with a pre-entrainment purity
¢’ that ends up with a post-entrainment purity in [¢, $+d¢]. The amount of mass flux within [¢', ¢'+d¢']
that entrains between zand z + dz is

(%) do.
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d.
d¢’M(gb’7z)72 .
Therefore, the product of these two expressions gives the mass flux at z within [¢', ¢’ +d¢’] that entrains
between z and z + dz and ends up in [¢, ¢ +d¢]. Since each parcel that entrains increases its mass by a fac-

tor of 1 + y, the mass flux added to [¢, ¢+d ] within [z, z + dz] from mass flux in [¢', ¢’ +d¢'] at zis

, , .\ dz . dy
do'M(&', 2) = (1+1)f(x) % do.
Putting it all together, we get
0 _ M2 (P M) A
5.z =202 ¢ [ g B 1prp| JE) ®

where y=¢'/¢—1.

Note that there are two pieces of parametric input to this equation: the Poisson-process length scale 7, which
sets the frequency of entrainment events, and the distribution f(y), which sets the amount of environmental
air entrained in an entrainment event. The value of 1 can be diagnosed from large-eddy simulations, and it
has been found to be about 500 m in deep convection (Romps and Kuang [2010a], which, unfortunately, used
a notation in which / is the inverse of the 4 used here) and about 200 m in shallow trade wind cumuli [Romps
and Kuang, 2010b]. The correct choice for f(), on the other hand, is not so easily determined.

A simple choice would be f(y)=0(y—0), where ¢ is the Delta function and ¢ is the mixing fraction that
every parcel experiences during an entrainment event. This is the choice made by Suselj et al. [2013]. This
choice, however, leads to a quantization of updraft purities, which is not seen in large-eddy simulations. For
example, if we used f(y)=0d(y—0o) with ¢ = 1, then every entrainment event would halve a parcel’s purity,
leading to updraft purities only equal to 27 for integer n. Instead, LES reveal a smooth distribution of puri-
ties in updrafts. To accommodate this, we need to select a smooth distribution function for f(y). As in Romps
and Kuang [2010b], we choose an exponential distribution,

1 _
f()=—e"". @
g
Here the constant ¢ is the mean entrainment fraction experienced by a parcel during an entrainment event.
With this structural choice for f, the SPM has two main parameters: 1 and . As shown in Appendix G, /4 is

the fractional entrainment rate.

Even with f(y) specified, equation (3) is not yet a complete description of the SPM: it is missing terms for
detrainment and sources/sinks of mass flux (e.g., a sink of mass flux due to precipitation fallout), and it does
not tell us how to evolve the intrinsic quantities such as water vapor or vertical velocity. The general SPM
governing equation, which is applicable to all extrinsic and intrinsic quantities, is the following:

2 (8, 2x(0.2) = =" 0D x(0.2)+ S OD 5 (5. 2)-d(. (.2 .
o[ a0 D g 2 o] 3.

Here d(¢, z) is the detrainment rate per purity interval in units of kg m ™3 s
Sx(¢,z) is the source (or, if negative, sink) due to processes other than detrainment and has units of s~
times the units of X. The SPM integrates eight of these equations to recover matrices for the fluxes of mass
(X=1), water vapor (X = g,), water liquid (X = g,), water solid (X = g,), x velocity (X =u), y velocity (X=v), z

velocity (X = w), and moist static energy (X = h).

, X is the intrinsic quantity, and
.

4, Detrainment and Sources

We would like to define the detrainment d(¢,z) such that it is positive only if the buoyancy b(¢,z)
is negative. This is consistent with the notion of buoyancy sorting, whereby only negatively buoyant
parcels are detrained. Furthermore, we demand that detrainment prevent bins from simultaneously

ROMPS ET AL.

STOCHASTIC PARCEL MODEL 325



QAG U Journal of Advances in Modeling Earth Systems  10.1002:2015ms000537

having positive mass flux M(¢,z) and negative vertical velocity w(¢,z): if a column of the w matrix is
approaching zero as we approach some height, the same column of the M matrix must also go to zero at
that height, and it is the job of detrainment to enforce this obviously desirable relationship. Furthermore,
for numerical reasons, we want to define d(¢,z) such that it becomes a smooth function of z between
the height where b =0 and the height where w = 0. The alternative is to define d(¢,z) as a delta func-
tion where w(¢,z)=0, but this would lead to spiky detrainment and an undesirable dependence on grid
spacing.

To find a formulation for d(¢, z) that satisfies these criteria, let us consider a simple case where there is no
entrainment and no sources or sinks of mass other than detrainment. In that case, the SPM governing equa-
tions for M(¢, z) and w(¢, z) reduce to

0

M=
9 5
&(W/z)—b

Dividing the first equation by M and the second by w?/2, we get

0 d

J 5, 2b
Elog (w /2)—m.

Imagine that b =0 at z= 2z, and w =0 at z=z; > z;. One way to guarantee that M goes to zero at z; is to
require that the fractional changes in M and w?/2 are the same, i.e., that (3/9z)log M equals (9/dz)log (
w?/2) for zy < z < z,. Equating the right-hand sides of the two equations above gives

4(6,2) = 2002 o pym-b(s2)] ©

w(o,z)

where we have added the Heaviside unit step function H to specify that this detrainment only turn on
when b is negative (i.e., for z satisfying zo < z < z;). With this choice, note that the detrainment rate is pro-
portional to the negative buoyancy, so it ramps up continuously from zero at z = z,. Furthermore, the pro-
portionality of the derivatives of the logarithms of M and w?/2 ensures that M goes to zero at z=z,.
Therefore, equation (6) is used as the definition of detrainment in the SPM.

The sources, denoted by Sy in equation (5), are listed in Table 1 for each of the eight matrices integrated
by the SPM. The quantities Auto, and Auto, represent the autoconversion of updraft liquid to precipitat-
ing rain and the autoconversion of updraft ice to precipitating snow, respectively. Note from Table 1
that the mass and momentum of rain and snow are removed from the updrafts immediately upon for-
mation. The quantities Evap and Melt represent the evaporation of updraft liquid to vapor and the melt-
ing of updraft ice to liquid, respectively. In the last column of Table 1, the moist static energy h is
defined as

h= Cpm(T_Ttrip) +(E0v+Rthrip)qv_E05qs+gz7

where c,p,, is the heat capacity of moist air at constant pressure, which is defined in terms of the mass frac-
tions for dry air (subscript a), vapor (v), liquid (/), and solid (s) and their corresponding heat capacities at con-
stant pressure as
Cpm = GaCpatquCpy +qi1Cpi+qsCps -

The other constants are the specific gas constant of water vapor (R,), the gravitational acceleration (g), the
triple-point temperature (T, = 273.16 K), the difference in specific internal energy between water vapor
and liquid at the triple-point temperature (Ey,), and the difference in specific internal energy between liquid
and solid at the triple-point temperature (Ey). The variables with a subscript e in Table 1 are the environ-
mental values. The reason for the source of MSE (i.e., the nonzero S;) is that MSE minus CAPE is conserved
for adiabatic parcel ascent [Romps, 2015], so dh/dz = —b.

The autoconversion rates are specified as
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q max(0,q,+gs—qo)

Table 1. The Variables and Sources Used in Equation (5)* Auto,= a+q z , @)
I I
Variable X X, Sy s
Mass 1 1 —Auto; — Auto; _Gs max (0,q1+9s—qo)
Auto, = . (8

Vapor qv e Evap q1+9s s
Liquid q Jle Melt — Evap — Auto,
sellié 9 Ge =Nl = Auiia where g, is the condensate mass-fraction
Velocity in x u Ue —(Auto, + Auto,) u . . .
Velocity in y v % — (Auto; + Auto,) v threshold, 7, is the autoconversion time
Velocity in z w We b scale for liquid, and 7, is the autoconversion
MSE h he B time scale for solid. Evap and Melt are

2All of these variables are functions of ¢ and z. defined implicitly by the requirement that

the air not be supersaturated. Let us define
q;j" as the saturation vapor mass fraction with respect to liquid and g;* the saturation vapor mass fraction
with respect to solid. Explicit expressions for these are given in the appendix of Romps [2015]. Using the
variable ¢ to denote a piecewise linear transition from liquid to solid between temperatures of Ty, and
240 K,

1 T < 240
[ LB 9)
* ) Twip—240 e

0 T 2 Ttrip

and defining a saturation fraction that interpolates between g/ and g in between these two
temperatures

a, = 1—&M)g,'+&(T)ay” (10)

the sources Evap and Melt are defined implicitly by the following requirements on q,, g, and g, in terms of
the total-water mass fraction g:=q, +q;+gs:

qv=min (G, q;), (1)
q=(1-¢) max(0,9:—q;), (12)
gs=¢ max (0,q:—qy) - (13)

This gives cloud updrafts a mixed-phase region between the triple-point temperature and 240 K. The treat-
ment of precipitation fluxes is given in Appendix B.

5. Closure

In the world of convective parameterizations, the “closure” often refers to the scheme that determines the
cloud base mass flux [Yano et al., 2013]. There are many different closures in use (see, for example, Lin et al.
[2015, Table 2], which lists the closures for CMIP5 models), but the most popular are the CAPE-based
closures, which set the cloud base mass flux proportional to CAPE or changes in CAPE. This type of closure
is used in many popular convective parameterizations, including the Relaxed Arakawa-Schubert scheme
[Moorthi and Suarez, 1992] and the Zhang and McFarlane [1995] scheme.

The allure of CAPE closures is that they give more convection when there is more CAPE, and since convection
tends to reduce CAPE, this prevents surface fluxes and large-scale forcing from pushing CAPE to unreason-
ably large values. Unfortunately, CAPE closures are not supported by theory, observations, or large-eddy sim-
ulations. From a theoretical perspective, it has never been articulated why cloudy parcels being born in
updrafts at the cloud base, whose abundance sets the cloud base mass flux, should care about their potential
buoyancy later in life, which is what determines CAPE. Without a physical process that causes CAPE to induce
cloud base mass flux, making cloud base mass flux a function of CAPE violates causality. Indeed, there is no
convincing observational evidence that large CAPE is a skillful predictor of convective mass fluxes. To the
contrary, observational studies often find a negative correlation between CAPE and precipitation rates
(i.e., small CAPE when convective mass fluxes are large) [Thompson et al., 1979; Mapes and Houze, 1992;
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McBride and Frank, 1999; Davies et al., 2013], and this negative correlation is also seen in large-eddy simula-
tions [Kuang and Bretherton, 2006].

The approach taken here is to specify the mass flux of dry updrafts (i.e., unsaturated parcels) at the first
numerical level above the surface. These dry updrafts are assumed to occupy 50% of the area, with the
other 50% occupied by downdrafts. The vertical velocity of the updrafts is set by the buoyancy of environ-
mental parcels lifted from the near-surface air to that first level above the surface. In particular, the specific
kinetic energy is set equal to the vertical integral of the linearly interpolated buoyancy between the two lev-
els; this is similar to the closure used by Gregory and Rowntree [1990]. All of the parcels are initialized with
identical thermodynamic properties, which are set equal to those of the near-surface environmental air.

With this closure, a positive-upward surface buoyancy flux leads to a balance in which there is a slight insta-
bility near the surface that drives an SPM mass flux (and compensating subsidence) that carries that buoy-
ancy away from the surface. Through stochastic entrainment, there is a small spread in the thermodynamic
and kinematic properties of parcels by the time they approach the cloud base. Through natural feedbacks
between convection and the environment, a small amount of convective inhibition develops near the cloud
base to throttle back the mass flux by permitting into the free troposphere only those parcels with sufficient
buoyancy and vertical velocity. This throttling of the cloud base mass flux by filtering out all but the most
buoyant and quickly rising parcels is also seen in large-eddy simulations of shallow and deep convection
[Kuang and Bretherton, 2006; Romps and Kuang, 2010b]. By using a simple buoyancy-driven mass-flux clo-
sure near the surface, allowing parcels to stochastically develop a distribution of properties as they rise, and
then letting feedbacks between convection and the environment throttle cloud base mass fluxes, we allow
the atmosphere to set cloud base mass fluxes in the way it occurs in nature.

Since the near-surface parcels are newborn and have not yet entrained other environmental air, they all
have a purity of one. Therefore, we need only specify the parcel properties in the last column of the first
row above the surface. Let us denote by z, the height of the surface air. Letting z; +A z denote the height
of the first row (or level) above the surface, the closure is as follows:

M(, 25+ A2) = pe(z+ AZyw(1,2,+A2)5( 1), (14)
w(1,zS+Az)—\/Az max (O,QW), (15)
av(1,z,+Az) =qe(z), (16)
ai(1,z+A2) =qe(2), (17)
qs(1, 2+ Az)=qse(2), (18)
u(1,z,+Az)=u.(z,), (19)
V(1725+AZ)ZVE(ZS)7 (20)
h(1,z;+Az)=he(z) . (21)

Note that the values of all of the intrinsic matrices are undefined at Az for ¢ other than one. Since the mass
flux is zero in those matrix elements, the values there of the intrinsic matrices do not affect the SPM govern-
ing equation, which is given by equation (5). For this reason, we may think of the undefined elements as
being zero.

6. A Single Call to the SPM

Figure 3 gave a cartoon illustration of the SPM matrices, but now we will see what the matrices look like in
a real call to the SPM. First, the SPM is coupled to a single-column model and run to radiative-convective
equilibrium (RCE); section 8 will give a detailed description of this simulation. For this section, it suffices to
note that about 50% of the time steps have a positive mass flux at 5 km, and, of those, we select a time
step with the median flux at 5 km to display here. The top-left plot of Figure 4 shows the M matrix from
that time step. We see that the purity of parcels decreases from one at the surface to a few percent in the
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Figure 4. Output from a single call to the SPM, selected as described in the text from a simulation of radiative-convective equilibrium. (top left) The mass-flux matrix M(¢, z). (bottom
left) The mass-flux profile M(2), calculated from M(¢, z). (top right) The equivalent-potential-temperature matrix 0,(¢, z). (bottom right) (solid) The mass-flux-weighted profile of updraft
0.(2), as calculated from M(¢,z) and 0.(¢, z), and (dashed) the 0, profile of the single-column model that called the SPM.

upper troposphere. It is encouraging to note that this result resembles that of Romps and Kuang [2010a,
Figure 3], who used a purity tracer in an LES of RCE to plot the mass flux in a similar way. A noticeable differ-
ence here is the mass flux at low purity below the cloud base. This feature appears here, and not in Romps
and Kuang [2010a], because the purity is set to one only at the first SPM level, whereas Romps and Kuang
[2010a] set the purity to one everywhere below the cloud base. Another difference is that the mass-flux
matrix M records the mass flux of all parcels, whether or not they satisfy the conditions (w>1 m s " and
q1+qs > 107°) that Romps and Kuang [2010a] used for conditional sampling of the LES. What is particularly
interesting about the low-purity boundary layer mass flux in the SPM is that it terminates so abruptly and
completely near the cloud base. This is the signature of the cloud base throttle discussed in the previous
section: the environmental temperature naturally adjusts to restrict the mass flux at the cloud base so that,
in RCE, the latent heating in the free troposphere matches the radiative cooling.

The bottom-left plot of Figure 4 plots the profile of total mass flux, which is given by M(z):jo1 dpM(¢p,z).n
other words, the mass flux at a particular height is equal to the weighted sum of the appropriate row of M,
with weights equal to the width of the purity bins. As we will see in section 8, this instantaneous mass-flux
profile closely resembles the time-averaged mass-flux profile, which is too top-heavy. Similarly, the purity
values in the upper troposphere are too low. Since Romps and Kuang [2010a] diagnosed a . of 500 m for
deep convection, which is larger than the 4 of 200 m diagnosed by Romps and Kuang [2010b] for shallow
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convection, the choice of 1 = 250 m used here is likely too small in the upper troposphere. As shown in sec-
tion 8, a remedy for the upper-tropospheric mass-flux and purity biases is to make 1 increase with height.

The top-right plot of Figure 4 shows the 0, matrix. Each element of this matrix gives the equivalent potential
temperature of convective updrafts at the corresponding height (row) and purity (column). The white areas
are where the 0, of updrafts is undefined because the updraft mass flux is identically zero. There is zero
mass flux to the left of the colored region because entrainment generates parcels in that region with such a
negative buoyancy and such a small w that the parcels reach zero w (and, therefore, detrain) before ascend-
ing even one grid spacing. There is zero mass flux to the right of the colored region because the numerical
implementation of the scheme zeros out trivially small mass fluxes to increase computational efficiency; the
mass flux reaches trivially small values at high purity and high altitude because entrainment has subjected
the mass flux there to multiple e-foldings of decay.

The bottom-right plot of Figure 4 shows the profiles of environmental 6, and updraft 0. as the dashed and
solid curves, respectively. The profile of environmental 0, is fed to the SPM when it is called. In a GCM, this
would be the instantaneous 0, of a GCM grid column. Here it is the profile of 0, from the single-column
model, which will be described in section 8. The profile of updraft 0, is given by j01 dp 0e(p, 2)M(p,2)/M(2),
which is calculated using the two matrices in the top row of Figure 4. Note that this profile cannot be inter-
preted as the 0. of any one ascending parcel. Instead, this mean 6, is an average over parcels with a wide
range of purity, including low-purity parcels that have recently had an entrainment event and, due to their
negative buoyancy, will soon detrain. In fact, by virtue of having recently entrained (and, therefore, having a
large mass), those negatively buoyant and soon-to-detrain parcels have a large influence on mass-flux-
weighted updraft properties, just as they do in an LES or observations.

7. Convergence of the SPM

Discretization is a necessary evil in any numerical integration, and the SPM is no exception. In the calculation
of the SPM governing equation (5), both the height and the purity are discretized, giving rise to matrices. The
height is discretized using a constant Az spacing, and the purity is discretized logarithmically using a constant
A log (¢) spacing. If the SPM has been coded in a numerically robust way, then the matrices that it produces
will converge as the Az and A log (¢) spacings are taken to zero. Furthermore, the matrices should converge
at fairly predictable values of Az and A log (¢), namely 1/4 and ¢/(1+a), respectively. For Az < 1/ and
A'log (¢) < a/(1+0), the matrices should be fully converged. To test this, we take the same time step used
to make Figure 4 and we recalculate the mass-flux profile for a variety of Az and A log (¢). The results are
shown in Figure 5. The left plot shows the test of Az convergence, in which A log (¢) is held fixed at the
small value of 0.05 and Az is varied from 100 m (red curves) to T m (blue curves). The right plot shows the test
of A log (¢) convergence, in which Az is held fixed at the small value of 10 m and A log (¢) is varied from 0.5
(red curves) to 0.01 (blue curves). In this case, 1/4 =250 m and ¢/(1+0)=0.2. As expected, the mass flux has
fully converged for values of Az and A log (¢) much less than these respective values.

8. The SPM in RCE

Up to this point, we have motivated the scientific rationale for the SPM, explained how it works, and shown
that it converges. In this section, we will implement the SPM in a single-column model and show that it
closely replicates an LES. In particular, we will run the SPM and the LES to radiative-convective equilibrium
(RCE) and then compare their simulated profiles of temperature and humidity, as well as their updraft prop-
erties. We will not undertake any major effort to tune the SPM, or to evaluate it in more complicated cases;
such work will be left to future studies.

The large-eddy simulation is run to RCE over an ocean with Das Atmospharische Modell (DAM) [Romps,
2008] on a square doubly periodic domain with a width of 36 km and a model top at 30 km. The
sea-surface temperature is set to 300 K, and surface fluxes are calculated using a bulk formula. In the bulk
formula, a mean westerly wind of 5 m/s is added to the actual wind speeds. Both shortwave and longwave
radiation are calculated interactively using the Rapid Radiative Transfer Model [Clough et al., 2005; lacono
et al., 2008], and the top-of-atmosphere insolation is specified to be a constant diurnal average for the equa-
tor on 1 January. The LES grid has a horizontal spacing of Ax =A y =100 m and a vertical spacing of
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Figure 5. Tests of the convergence of the SPM using the same time step used in Figure 4. (left) Mass-flux profiles using a logarithmic purity grid spacing of Alog (¢)=0.05 and a height
grid spacing with Az ranging from (red colors) 100 m to (blue colors) 1 m. (right) Mass-flux profiles using a height grid spacing of Az= 10 m and a logarithmic purity grid spacing with
A log (¢) ranging from (red colors) 0.5 to (blue colors) 0.01.

Az =50 m for z< 600 m, Az= 100 m for 1 km < z < 17 km, Az= 1 km for z> 26 km, and smoothly transi-
tioning in between. The default time step of 5 s is reduced as needed to satisfy the Courant-Friedrichs-Lewy
(CFL) condition. The simulation is restarted from a coarser RCE simulation (500 m grid spacing) and is then
run for 2 weeks of model time. Statistics are calculated from the last week.

To construct a single-column model with the SPM as the convective parameterization, the SPM is coupled
to a single column of DAM. We refer to this pairing as Stochastic PArcel Model In A Column (SPAMIAC).
Even though DAM is a large-eddy model, a single column of DAM is dynamically impotent. Only by cou-
pling it to a convective parameterization can the column simulate radiative-convective equilibrium; without
a convective parameterization, the column would simulate radiative equilibrium, which has a dramatically
different temperature structure.

In SPAMIAC, the coupling between the SPM and DAM is straightforward. The SPM feels DAM through the
seven X, variables listed in Table 1. DAM feels the SPM through the tendencies that the SPM generates, as
described in Appendix F. In SPAMIAC's simulation of RCE, DAM uses a 100 s time step and a vertical grid
spacing that transitions from 100 m at the surface to 500 m at 5 km, and then transitions from 500 m at
23 km to 1.2 km at 30 km. The surface-flux scheme and radiative forcing are the same as in the LES. In the
discretization of SPM’s equation (5), which is explained in detail in Appendix A, height z is discretized by
subdividing DAM'’s grid such that the vertical grid spacing Az does not exceed 100 m, and purity ¢ is discre-
tized into bins that have a common logarithmic spacing of Alog (¢)=0.05. The SPM’s height grid extends
from the surface to an altitude of 20 km. The purity grid extends from 100% to less than 1%. SPAMIAC is
run to RCE for 50 days; statistics are calculated from the last 25 days.

The SPM has seven tunable parameters, which relate to entrainment and microphysics. Regarding
entrainment, there are A (the mean distance between entrainment events) and ¢ (the mean fraction of
environmental air entrained in an entrainment event), which are used in equations (5) and (4), respec-
tively. In this RCE simulation, we use 2 =250 m and ¢ = 0.25, which give a mean entrainment rate of
6/%.=1 km™'. Regarding microphysics, we have five parameters: the critical condensate mass fraction
go and the time scales 7, and 1, in the autoconversion equations (7) and (8), and the sedimentation effi-
ciency SE and the evaporation/sublimation e-folding height { used in equations (B3) and (B4) of
Appendix B. Here we set go=5X10"%, ;=300 s for temperatures above freezing and 7, = 50 s for tem-
perature below freezing (i.e., faster generation of precipitation in the mixed-phase region), SE = 0.3,
and { =3 km.
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Figure 6. Profiles of (left) temperature, (middle) relative humidity, and (right) mass flux conditioned on w>1m s~ " and g;+qs > 10~° for (dashed) the LES RCE simulation, i.e., DAM at
100 m resolution, and (solid) the SPM RCE simulation, i.e., SPAMIAC as described in the text.

Figure 6 shows the profiles of temperature, relative humidity, and updraft mass flux for both the LES and
the SPM (the former is DAM run at 100 m resolution, and the latter is SPAMIAC). The SPM generates a tem-
perature profile that is very similar to that generated by the LES. It might sound surprising that a convective
parameterization with such a large entrainment rate (1 km™') could generate the correct lapse rate. For
deep convection, the community is used to thinking of entrainment rates as being less than 0.5 km™" [see,
for example, Romps, 2010, Figure 2]. Those lower effective entrainment rates, however, are generated by
shoehorning convection into a bulk-plume model. As discussed by Romps [2010], the bulk-plume model
underestimates the true entrainment rate because it neglects cloud heterogeneity. In large-eddy simula-
tions, entrainment rates much closer to 1 km™ "' are found using Eulerian direct measurement [see Romps,
2010, Figure 7], and those larger rates have been confirmed by another method of Eulerian direct measure-
ment [Dawe and Austin, 2011] and by Lagrangian direct measurement [Yeo and Romps, 2013].

The profiles of relative humidity have both similarities and differences. Both the LES and the SPM start at
80% at the surface and then increase to 90% at the cloud base, and they both simulate an RH minimum at
a height of about 5 km. In the upper troposphere, however, the SPM is significantly more moist. Both the
LES and the SPM have their greatest concentration of ice from anvils at about 11 km, but the mass fraction
of ice in the SPM is about 6 times greater there. There are many possible explanations for this difference in
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Figure 7. Profiles of (left) mass flux and (right) mass-flux-weighted in-cloud purity for (solid) the LES, (dotted) the SPM with the default
parameters, which include 4 = 250 m, and (dashed) the SPM modified to have 1 = 250 m below the melting line and 4 = 1000 m above
the melting line. Note how using a larger 4 above the melting line ameliorates both the upper-tropospheric biases in mass flux and purity.
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humidity and ice concentration, and only a few will be listed here. One possible explanation is that SPA-
MIAC detrains its ice uniformly throughout the horizontal domain, while updrafts in the LES will tend to
generate more concentrated patches of ice that will, due to a free-fall speed that depends on mass fraction,
fall out faster. Another possibility is that SPAMIAC, by virtue of being a single-column model, lacks gravity
waves that would dehydrate the upper troposphere. Finally, another possibility is that the current treatment
of microphysics in the SPM is simply too crude to emulate some of the microphysical processes that are
important for dehydrating the upper troposphere.

The last plot of Figure 6 shows the mass flux profiles for the LES and the SPM, calculated in the same
way for both: counting only the mass flux of parcels with w>1 m s~ ' and g;+g; > 10"°. As mentioned
in section 6, the SPM mass flux is too large in the upper troposphere because the choice of 1 =250 m
is too small there. Increasing / in the upper troposphere simultaneously remedies the top-heaviness of
the mass-flux profile and the spuriously low purity of upper-tropospheric updrafts. This is illustrated in
Figure 7, which shows the RCE mass flux (left) and mass-flux-weighted purity (right) for the LES (solid),
the ESPM with 4 set to 250 m at all heights (dotted), and the ESPM with 1 set to 250 m below the melt-
ing line and 1000 m above the melting line (dashed). Note how even this crude height dependence of
/ greatly ameliorates the upper-tropospheric biases. For simplicity, however, and to avoid the slippery
slope toward a major tuning exercise, only simulations with constant 1 (and constant o, SE, etc.) are
shown henceforth.

To get an in-depth picture of how the LES and SPM updrafts compare, Figure 8 plots the normalized mass
flux as a function of height (the ordinate) and various other updraft properties (the abscissa). To explain this
in detail, consider the top-left plot, which has the liquid-water mass fraction g, on the abscissa. At each
height z, the colors indicate the distribution of normalized mass flux defined as

M(27 C]/) 7 (22)

max ¢ M(z,q))
where M(z, g;)Aq; is the mass flux of updrafts at height z with a liquid-water mass fraction between g, and
g, + Ag,. The mass flux distribution is normalized by its maximum at each height so that the distribution
will be equally visible at all heights. There are six pairs of plots in Figure 8, which display the normalized
mass flux as a function of liquid-water mass fraction, ice mass fraction, purity, equivalent potential tem-
perature, buoyancy, and vertical velocity. Each pair is color coded and individual plots are labeled as
either “LES” or “SPM.”

Overall, Figure 8 demonstrates good agreement between the LES and the SPM. As noted in Romps and
Kuang [2010b], the Lagrangian implementation of the SPM does a good job of replicating both the mean
and variance of cloud properties in shallow convection. Here we see that this Eulerian implementation of
the SPM is also able to replicate the mean and variance of cloud properties, in this case, for deep convec-
tion. Clearly, there is also room for improvement, and the application of more rigorous approaches to tun-
ing and microphysics should realize some of that potential.

Although we will not attempt that tuning exercise here, Figure 9 gives a sense of the parameters to which
the ESPM is most sensitive. The first seven plots correspond to the seven parameters in the current imple-
mentation of the ESPM. On the abscissa, one of those parameters varies over a plausible range while all
other parameters are held fixed at their default values. In each plot, the root-mean-square error (RMSE) of
mean ESPM profiles (relative to mean LES profiles) are plotted for six different observables: temperature T,
relative humidity RH, cloud purity ¢, cloud total water g;, cloud buoyancy b, and cloud vertical velocity w. In
these plots, lower values are better. For the environmental values T and RH, the RMSE is calculated from
z=0to z= 20 km. For the cloud properties, the mean profiles are mass-flux-weighted and the RMSE is cal-
culated from z=1 km to z= 10 km.

It is clear from Figure 9 that the ESPM is most sensitive to independent variations in 4 or ¢. These variations
alter the entrainment rate, which is equal to ¢/.. When A and ¢ are both varied while holding a//. fixed (see
the bottom-right plot), then the sensitivity is smaller. This is consistent with Romps and Kuang [2010b, Fig-
ure 7], which exhibited a valley of good / and ¢ for the LSPM along a fixed value of ¢/4 (6/4 = 3 km™" there
for shallow convection, compared to o/4 =1 km ™" here for deep convection).
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in-cloud purity ¢, total water mass fraction q,, buoyancy b, and vertical velocity w) for different values of SPM parameters (Poisson lengthscale /, mean entrainment fraction g, evapo-
ration e-folding distance {, sedimentation efficiency SE, autoconversion threshold g, autoconversion time scale for liquid water 7, autoconversion time scale for solid water z,, and
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X107%, 1/=300s,and 7,=50s.

The next most influential parameters are the microphysical parameters of sedimentation efficiency SE
and autoconversion threshold go. The ESPM is relatively insensitive to the microphysical parameters of
evaporation e-folding distance {, liquid water autoconversion time scale 7, and solid water autoconver-
sion time scale 7,. Therefore, we can say that the ESPM has effectively only four degrees of parametric
freedom: /4, g, SE, and qo.

9. Discussion

How does this Eulerian implementation of the Stochastic Parcel Model (ESPM) fit into the landscape of con-
vective parameterizations? The most popular set of convective parameterizations are those that determine
convective tendencies by first calculating convective mass fluxes. We may refer to these as mass-flux
schemes. Within the set of mass-flux schemes are plume models and parcel models.

Plume models [e.g., Arakawa and Schubert, 1974; Tiedtke, 1989; Kain and Fritsch, 1990; Zhang and
McFarlane, 1995] represent convection as either a single updraft (bulk plume) or a collection of
updrafts (spectral plume). The obvious deficiency of bulk-plume models is that they are unable to rep-
resent the variance within cloudy updrafts. Spectral-plume models do have updraft variance, but the
fact that each plume is distinguished by a constant entrainment rate produces updraft properties that
are highly correlated in the vertical, while Romps and Kuang [2010b] showed in large-eddy simulations
that stochastic entrainment dramatically reduces (or even virtually eliminates) those correlations. Par-
cel models [e.g., Raymond and Blyth, 1986; Emanuel, 1991; Romps and Kuang, 2010b; Nie and Kuang,
2012a; Suselj et al., 2013] represent convection as a collection of parcels, each of which are distin-
guished by the altitudes and intensities of their entrainment events. Before the advent of the ESPM,
parcel models could be divided into two nonintersecting subsets, which we can refer to as type | and

type Il
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Type | parcel models produce deterministic convective tendencies, but have only a finite number of possi-
ble entrainment histories [Raymond and Blyth, 1986; Emanuel, 1991]. For example, in the scheme of Ray-
mond and Blyth [1986], the cloud base mass flux is split into 9(N,—1) parcels, where N, is the number of
vertical levels. Each parcel experiences exactly one entrainment event at one of the N, — 1 levels above the
lowest level, and environmental air is entrained there with one of nine possible entrainment fractions. Since
the cloud base mass flux is apportioned into these 9(N, — 1) parcels in fixed proportions, this scheme pro-
duces deterministic convective tendencies; in other words, given the same environmental conditions, the
scheme is guaranteed to give the same result. On the other hand, the finite number of possible entrainment
histories—i.e., only 9(N, — 1), with only one entrainment event per parcel—greatly diminishes the physical
realism of this approach.

Type Il parcel models—i.e., the LSPM—have an infinite number of possible entrainment histories, but
produce stochastic convective tendencies [Romps and Kuang, 2010b; Nie and Kuang, 2012a; Suselj
et al., 2013]. For each parcel of the LSPM, a Monte-Carlo method selects from an infinite number of
possible entrainment histories, which correspond to the heights of the parcel’s entrainment events
and the amount of air entrained in each event. One of the key advantages of the LSPM is that its
Poisson-process entrainment is motivated by and supported by LES results [Romps and Kuang,
2010b,a], while the treatment of entrainment in the existing type | schemes is contradicted by LES
results [see Romps and Kuang, 20103, Figure 6]. But, since only a finite number of parcels can be simu-
lated in a Lagrangian fashion with a finite amount of computational effort, the LSPM’s convective ten-
dencies are necessarily stochastic. As discussed in the introduction, this source of noise is neither
intentional nor desirable.

The ESPM is a new breed of parcel model that has the best features of both type | and type Il schemes: it is
deterministic like type | schemes and it gives parcels access to an infinite number of possible entrainment
histories like type Il schemes. This is accomplished by solving the N = co LSPM under the approximation
that there is no variance among parcels with the same height and purity. After some mathematical manipu-
lation, the numerical implementation of the ESPM is described by equations (A5-A10) in Appendix A. These
equations describe the integration of the ESPM as a sequence of matrix multiplications, which are amenable
to efficient computation.

Finally, it is worth noting that the ESPM is highly configurable and extensible. Equations (A5-A10) may be
thought of as a foundation upon which many variants of the ESPM may be built. The only assumption
that is truly baked into those equations is the choice of an exponential distribution for the entrainment
fraction, i.e, f(y)=(1/0)exp (—x/0o). Everything else may be modified in a straightforward way. For exam-
ple, if evidence warranted, the Poisson mixing length / could be made a function of either height z or
purity ¢, or both. Or, since the results of Nie and Kuang [2012b] suggest that in-cloud mixing should cause
parcels of the SPM to homogenize, a homogenization tendency could be added to the ESPM governing
equations. Or, since recent work suggests that clouds feel aerodynamic drag [Romps and Charn, 2015;
Romps and Oktem, 2015], a drag force could be added to the z-momentum source term S,,. Or, for exam-
ple, the very simple microphysics described here could be replaced with a much more realistic micro-
physical scheme. With this large degree of configurability and extensibility, coupled with the best
features of type | and type Il parcel models, the ESPM is a promising foundation for future convective
parameterizations.

Appendix A: Numerical Integration

Our goal here is to convert the SPM governing equation (5) to a matrix equation that can be solved
numerically. First, we will discretize in height using a staggered grid. Let heights z, for integer k, be the
interface heights at which the mass fluxes are defined. The scalar height in between z, and z,,, which is
the mean height at which mass is entrained and detrained as updrafts travel from z, to z.,, will be
denoted by 7.1 ,. For grid spacings that are much smaller than 4, the fraction of mass flux that experien-
ces an entrainment event in between z, and z,. ¢ is approximated well by (z4+1—2)/A. For the numerical
implementation, a grid should always be chosen such that z,+1—zx < 4 for all k. But, to guarantee numerical
stability even when this condition is violated, we will represent the fraction of mass flux that experiences an
entrainment event in between z, and zx+¢ by 1—exp [~ (zx+1—2k)//]. Note that this is the fraction of mass
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flux that experiences one or more entrainment events; by using this discretization for zx1 —zx=4, the scheme
will be numerically stable, but multiple entrainment events will be treated erroneously as single entrainment
events. The cloud mass flux within [¢', ¢’ +d¢'] at z, that entrains between z, and z, + is

dd)/ M(¢,,Zk) (.I _e*(ZkH*Zk)//:) )

Therefore, equation (5) discretized in height becomes

M(¢, zic1)X(§, 2k1) = e~ @2 M(p, )X (b, 2k)

+(zK1—2) %f; Sx(¢,26) = (z+1 ~2)d(d, 2)X(, z4) (A1)
+[1-e (@2 /A]J de' M(¢', z)[X (¢, ze) + 1Xe(2e)IF (1) g:;

Next, we will discretize ¢ by denoting the boundaries of bins by ¢;. We will approximate all variables as con-
stant within a ¢ bin, and we will use index i+ % to denote values in the purity bin from ¢, to ¢;,. Integrat-
ing over the ¢ bin ranging from ¢; to ¢;,,, we get

(¢:+1 d’:) i+3 k+1X4+‘ k+1 — (¢i+1 ¢:) G =2 //M:# kX:# k

M,
(i1 = i) (Z+1 Zk)W ksx,+1k (i1 =P1) (Zk1 =2k ) i1 4 Xi 1k

l+i,

9|

1 it
+ [1 —e*(szzk)/*] L d¢’M(gb'7zk)J dpX(¢', zk)+ yXe(zi))F (1)

i

If there are Ny purity bins with boundaries ranging from ¢, to ¢N¢H, then this can be written as

(i1 = DM 1 g Xisrpir = (D —Pye” (r =2 /}MI‘F KXKiv1k

M+1,k
+(Pis1— D) (Zk+1—2k) - 5x,i+%,k*(¢i+1*¢i)(zk+1 )d:+‘kX
Witlk (A2)

X Ny P Pisa )
#lime @S W[ g dpbt @l () #‘ -
j=1 b

So long as the double integral can be solved, this is an expression for MX at z.; as a linear function of MX at z.

We will step through the evaluation of this double integral for X = X, = 1 and then quote the result for gen-
eral X and X,. For X = X, = 1, the double integral is

+

P i
L dqs] D)

*

Let us focus first on the inner integral, which we denote by a x. Recall that y=¢'/¢—1. Note that
8x/8¢=—d>//¢2, SO a positive d¢ corresponds to a negative dy. Therefore, in x, we can write the integral
over d¢ times |9y /0¢| as the following integral over dy,

i1 31 7(bi)
do j dy.
Li b Lo

where we are, for now, leaving the dependence of y on ¢’ implicit. Using

1 - g
F() = —H(pe ™,

where H is the Heaviside step function, term x is
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x = [1+o-+max[0, z(y.)]] e KOs l/e
—[1+a+max|0, y(¢p;)]] e mxOxldl/e
Since y(¢)=¢'/dp—1, this can be written as
0 P < ¢
*= 8 1t—[1+oty())e 107 b < B < by -
(1ot (dia)le #0714+ aty(g))]e “OV7 iy < ¢f

Integrating over d¢’ from ¢; t0 ;1 to get term t, we find

) 0 j<i
41
T=J dd'x = Fij= ¢ (1+0) (b =) —Ay j=i , (A3)
é;
A;+1J*A,‘J j>i

where

Aij=ce"?(¢;+20¢;) exp (— %)

—0'81/0(¢j+1 +20¢;) exp <_ q:;t;) ‘

This gives an explicit and analytical expression for the double integral 1 in terms of ¢ and the boundaries of
the ¢ bins.

For general X and X,, the double integral becomes
+

¢j+1 , i 81
[ o [ | 0t etz
¢ ¢ ¢
In this case, we find
¢j+1
4= L dd'x = FlX it FaXe(2) | (Ad)
J
where
0 j<i
FR={ G =A7 =i, (AS5)
A >
and

Alj=ce'/? pexp (— (Z)’a)

i

# (A6)
—pl/0 4. _Fjt
(42
(-,'1 =j1— ¢ (A7)
pR—— ¢f
A7 =oe (¢j+20¢,—¢>i)exp — %
’ f (A8)
7091/“(4)]“*2‘7‘[’;*4),')9)@ (f j+1)7
bio
G=0¢i1—d;. (A9)
Then, governing equation (5) can be written as the following matrix equation,
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(Pre1 = ODMis s 1 Xivsin = (P —di)e” ™2 My Xy

Mi+l k
— Sxi+lk— (Pis1— i)zt _Zk)di-%—%,kxi-%—%‘k
Witlk (A10)

2"

(i1 &) (Zk+1—2)
Ny

+ [1 —e n 7Zk)//l] ZMj+%,k [Fibxjﬁ-%,k*'F;ZJXe(Zk)} .
=

This equation reduces the calculation of SPM fluxes to a sequence of matrix additions and multiplications.
Note that the matrices F,b and Ffj are functions only of ¢ and the ¢-bin boundaries, so they can be precom-
puted and saved in a lookup table.

Appendix B: Precipitation Fluxes

Once water has undergone autoconversion, it takes on the same temperature and horizontal velocity as the
environment and it contributes to the free-fall mass fluxes ﬁ[_’ff and F-S?ff. Here and in the remaining appendi-
ces, we denote by a tilde a quantity that is a function of z only (i.e., already integrated over ¢). The subscript
| refers to liquid water, the subscript s refers to solid water, and the subscript ff refers to free fall. We can

define AAuE), and AUtBS as the total rates of autoconversion in units of kg m~3 s, which are related to the
Auto, and Auto; of equations (7) and (8) by
— v M(,2)
Auto,(z :J d "~ Autoy(¢, 2), (B1)
1(2) . ¢W(¢7z) 1(¢,2)
— T M(¢,2)
AUtOS(Z)_L do w(6.2) Autog(¢,z) . (B2)

Let us define the sedimentation efficiency SE as the fraction of precipitating water that falls to the sur-
face without evaporating or sublimating. Let us assume that the profile of evaporation and sublimation
of precipitation formed at z has an exponential shape that decays downward from z with an e-folding
distance {, which is a tunable parameter. Then, the contribution to ﬁ[‘ff(z) from AAutJo/ in between Z' and
Z'+dzZ is

_ /L p2s/C
—Auto,(z/)dz’H(z’—z){SE+(1—SE)ez i }

ezl/:—ezs/;

where H is the Heaviside unit step function. Note that the minus sign is here because ﬁ[’ff is a downward
pointing flux. The contribution to ﬁ/,ff(z) from Auto; in between z’ and Z/+dZ is

—Auto(7) dZ H(Z —2)H[To(2) ~ Teip) {SE+(1 _sp) ez/c_eZs/c} |

ezI/C—eZs/C

while its contribution to Fs(z) is

e , , ez/i—eZS/:
_AutOS(Z ) dz H(Z’_Z)H[Ttr]p_Te(Z)} {SE+(1 _SE) m} .
Therefore,
- 00 _ /¢ _ o7/
Fra(z) = fL dz Auto,(z/){SE+(1 fSE)%}
, (B3)
00 , T , ez/l_els/:
—H [Te(z)_Ttrip] J; dz AUtOS(Z ) SE+(1 _SE) m
~ 00 , , ez/g_ezs/‘:
Fol2) = —H[Tt,ip—re(z)]L d7 Autos (7 ){5E+(1—5E)m}, (B4)
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Appendix C: Net Fluxes and Sources

The SPM must feed to its host model the fluxes of mass, total enthalpy, momentum, vapor, liquid, and solid,
as well as the sources of these quantities within updrafts (which are zero except for vapor, liquid, and solid).
The updraft plus free-fall fluxes of these quantities are calculated as follows:

1
ﬁmass(z):JO d¢M(¢az)+ﬁ/‘ff(z)+’E5-ﬁ(Z)7 (@)
1
’N:enth (Z)=J0 dd) M(¢7Z)Htot(¢7Z)+’~:I,ff(Z)Htot,/,e(z)+'Eﬁ,s(Z)Htot,s,e(Z)7 (CZ)
— 1
Frnom (Z)ZL dp M(,2)t(¢p,2)+ [Fie(z) +F s f(2) | e, (C3)
g

Fa)=| domio.2a0.2). (ca

1
ﬁ[(Z):JO d(f)M((p,Z)q,(qs,Z)'i'ﬁffV/(Z), (C5)

1
Fue)=| dM9.2)(0.2)+Fur(2), (co

where Hio(,2) = h($, )+ ($,2)|*/2 and h is the MSE. The values Hiot/e(2) and Hiorse(2) are the MSE of
liquid and solid water at the environmental temperature T,(z) plus the specific kinetic energy of the environ-
ment |d.(2)|?/2.

The sources of vapor, liquid, and solid are given in terms of Evap and Melt, which we recall are the per-¢-
bin rates in updrafts only (i.e., they do not include any evaporation or melting that may occur in the GCM
once liquid or solid is detrained by convection or deposited by the convergence of a free-fall flux). In
particular,

", M2
=, 49 g Evap(.2), )
1
§,=L do lxgz:g [Melt(¢,z)—Evap(¢, 2)], (C8)
T — ! M(¢7Z)
Ss= .Io d¢ w($.2) Melt(¢,z) . (C9)

Appendix D: Positive-Definite Treatment of Water

The fluxes of water calculated by the SPM could lead to negative water densities over the time step used by
the host model if those fluxes are not appropriately limited. For vapor, liquid, and solid, we cannot apply a
positive-definite flux limiter to each separately because there are sources and sinks of each, and the sources
and sinks move mass between those three categories at each height. Instead, we will need to proceed in a
multistep fashion. Let us define Fasa height-dependent three-vector with components F,, F;, and F,. We
then decompose F into two vectors: I?Way, in which all of the components are of the same sign, and f?zway,
whose components sum to zero. We define the components of szay as

0 > _IFI=0
j
F2way,i = Z (Flis|F/|) 5

: A
— |Fi=s|Fi|— (Fi+s|Fi|) < otherwise

2 > (FitslFi)

k

where
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1 ZF,-ZO
i

-1 Y F<o’
i

s=

and I?may = F—fzway. Defining

3
F= Z F1way7i
i=1

as the net water flux, we apply a one-dimensional positive-definite flux limiter to F to ensure that the total
water mass does not go negative. This flux limiter is described in Appendix E.

Let us denote by FP* the flux-limited water flux. We then define a flux-limited version of ﬁway as

~pos F -

F1way: TF1way> (D1)
and then the flux-limited version of F is

EPOS F»u;a;sa S+ szay ' (D2)

The components of this vector are the corrected component-wise fluxes F'SOS., F';)OS, and I:'fos. We then apply

these corrected fluxes, as well as the uncorrected rates of evaporation and melting, to the host model over its
time step. This will guarantee nonnegative total water at each level, but will not guarantee that vapor, liquid,
or solid are separately nonnegative. To regain nonnegative water classes, we move mass among the water
classes at each level to bring the negative values up to zero. In particular, defining g with the three compo-
nents q,, g, and g,, we then calculate a corrected vector G°*, with components defined as

0 > lgil=0
j

q= >.a : (D3)

(q-+|q~|)17 otherwise
CY (@ctad)

k

The movement of mass generated by this algorithm is then recorded as an appropriate amount of addi-
tional evaporation and sublimation, which are added to S, S;, and S to produce the corrected sources
~pos  =pos ~pos

S, .S ,andS; .

Appendix E: One-Dimensional Flux Limiter

We describe here a simple and minimally invasive positive-definite flux limiter for fluxes on a one-
dimensional line segment. The advantages of this flux limiter over other flux limiters are (1) that it uses
nonlocal information to impose minimally invasive limits (which is possible due to the one-dimensional
nature of the grid), and (2) that it works just as well for very large CFL numbers. Although this scheme is
developed with a GCM grid column in mind, it is equally applicable to fluxes on any line segment. The
idea behind the scheme is that each grid box k has its outgoing fluxes scaled down by a common factor
of o, where 0 < o < 1. To be minimally invasive, we wish to find the set of ¢ that are all as close as pos-
sible to one.

To accomplish this, we first find all of the grid cells that have no incoming fluxes from another grid cell;
let NI (for “no incoming”) be the set of those grid cells. A cell at the end of the line segment is considered
a member of NI if it has no incoming flux from its one neighbor, regardless of the flux going into or out of
that end of the line segment. Next, we find all of the grid cells that have no outgoing fluxes to another
grid cell; let NO (for “no outgoing”) be the set of those grid cells. A cell at the end of the line segment is
considered a member of NO if it has no outgoing flux to its one neighbor, regardless of the flux going
into or out of that end of the line segment. Once the sets Nl and NO have been identified, the assignment
of the flux limiters starts with the grid cells in NI. Since each NI grid cell has no unknown fluxes coming in
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NI NO NI NO (for an NI grid cell on an
end, we know exactly what
Step 1 T 1_9 T T T 5_9 T T the incoming fluxes are), we
(8 (8 can immediately define of
for each NI grid cell as
Step 2 - 1P 1P < €< PP PP P )
~in,u
O(l 042 044 045 046 — {1 AZKpk+ At F
? ~out ?
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Step 3 -1 1—9 2—9 < 46— 5—9 6—9 7—9 (E1)
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where p“ is the density in
1 2 3 4 5 6 7 grid k, AZ“ is the grid spac-
. . . ~out
Figure 10. An example of assigning flux limiters to a line segment with seven grid cells. The ing, At is the time step, F
arrows show the direction of the fluxes at the interfaces. In this case, there are two NI grid cells is the sum of the magnitudes

and two NO grid cells. Marching outward from the NI grid cells, it takes three steps to find the

of all the outgoing fluxes
minimally invasive flux limiters for this case. i going '

and F™" is the sum of the
magnitudes of all the incom-
ing fluxes reduced by their origin grid cell’s o factor (for NI, incoming fluxes are possibly nonzero only for
an end grid cell, and fluxes into the line segment have « =1 since the requirement of positive-definite
masses places no restrictions on them). Any flux outgoing from a grid cell k in NI is now reduced in magni-
tude by o,

We then assign the flux limiters iteratively to the remaining grid cells using equation (E1), marching out-
ward from NI grid cells until we end in NO grid cells. For example, in step 2, we go to every non-NI grid cell
that is adjacent to an NI grid cell. If the grid cell is an NO grid cell, then there is nothing to do (i.e., no need
to assign a flux limiter when there are no outgoing fluxes) unless the cell is on an end with a flux going to
outside the line segment; in that case, we can calculate its o factor using equation (E1). Otherwise, if the
grid cell is not in NO, then we already know all of the o factors needed to calculate the grid cell’s F™ and,
therefore, to calculate its o factor using equation (E1). Proceeding in this way from NI cells to NO cells, we
find the minimally invasive set of flux limiters.

Figure 10 illustrates this procedure for a line segment with seven grid cells. In this case, there are two
NI grid cells and two NO grid cells. Note that end grid cells are always either NI or NO. If both are NO,
then there must be an NI grid cell in the interior. Either way, there is always at least one NI grid cell. In
step 1, the « factors are calculated according to equation (E1) for the NI grid cells. In step 2, the o fac-
tors are calculated according to equation (E1) for the cells adjacent to NI grid cells. In step 3, which
happens to be the final step for this case, the flux limiter for grid 7 is defined. Note that flux limiters
are not needed for interior NO cells since they have no outgoing fluxes and, therefore, there is nothing
to be limited.

Appendix F: Host-Model Tendencies

The tendencies of per-volume host-model mass, energy, momentum, vapor, liquid, and solid are
— OF mass /02, —OF entn/ 02, —OF mom /02, St —OF Y [0z, 8] —OF}> |0z, and St —0FF” /oz, respectively.
Since the SPM grid is chosen so that the host-model interfaces coincide with SPM interfaces, the fluxes are
naturally defined on host-model interfaces and the sources are naturally defined on the volumes in

between. This makes it straightforward to calculate tendencies for host-model grid boxes. In addition to the
updraft and free-fall fluxes, we impose compensating mass fluxes equal to —J'01 d¢p M(¢,z) that carry the
environmental properties. Like the convective and free-fall fluxes, these are defined on host-model interfa-
ces. The environmental properties on those interfaces are calculated using third-order upwind interpolation
and limited, as need, with the Thuburn flux limiter [Thuburn, 1996].

Appendix G: Fractional Entrainment Rate

We can calculate the fractional entrainment rate by integrating equation (3), which gives the change in M
due to entrainment only. Integrating over ¢ gives
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Since the integral of f(y) over y gives one, the first two terms on the right-hand side cancel. Therefore, we

find that

~lq

8 1 B 1
(E 4[0 d¢ M((b’Z))entrainment - J‘0 d¢ M(¢7Z)

where o= [dy 7 f(y) is the mean y for entrainment events. In other words, (IM/0z) 4ainment =M, Where &
=g/ is the fractional entrainment rate.
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