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The problem of finding supersymmetric brane configurations in the near-horizon attractor geometry of a
Calabi-Yau black hole with magnetic-electric charges �pI; qI� is considered. Half-BPS (Bogomol’nyi-
Prasad-Sommerfield) configurations, which are static for some choice of global AdS2 coordinate, are
found for wrapped brane configurations with essentially any four-dimensional charges �uI; vI�. Half-BPS
multibrane configurations can also be found for any collection of wrapped branes provided they all have
the same sign for the symplectic inner product pIvI � uIqI of their charges with the black hole charges.
This contrasts with the Minkowski problem for which a mutually preserved supersymmetry requires
alignment of all the charge vectors. The radial position of the branes in global AdS2 is determined by the
phase of their central charge.
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I. INTRODUCTION

AdS2 � S2 � CY3 flux compactifications of string the-
ory arise as the near-horizon geometries of type IIA black
holes. The fluxes are determined from the black hole
charges. The vector moduli of the Calabi-Yau threefold
and the radius of the AdS2 � S2 are also determined in
terms of these charges via the attractor equations [1,2].
These compactifications are interesting for several reasons.
A central unsolved problem in string theory is to find—
assuming it exists— a holographically dualCFT1 for these
compactifications.1 Moreover recently a simple and unex-
pected connection was found between the partition func-
tion of the black hole and the topological string on the
corresponding attractor Calabi-Yau [4]. In this paper we
will further our understanding of these compactifications
by analyzing the problem of supersymmetric brane
configurations.

Following some review in section II, in section III the
problem of supersymmetric branes is analyzed from the
viewpoint of the four-dimensional effective N � 2 theory
on AdS2 � S2. This analysis is facilitated by the construc-
tion [5] of the �-symmetric superparticle action carrying
general electric and magnetic charges �uI; vI� in such
theories. It is found that there is always a supersymmetric
trajectory whose position is determined by the phase of the
central charge Z�uI; vI�. In global AdS2 coordinates

ds2 � R2��cosh2�d�2 � d�2 � d�2 � sin2�d�2� (1.1)

the supersymmetric trajectory is at

tanh� �
ReZ
jZj

: (1.2)

For the general case � � 0 this trajectory is accelerated by
cases a dual CFT2 is known [3].
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the electromagnetic forces. We further consider n-particle
configurations with differing charges and differing central
charges Zi; i � 1; . . . n, constrained only by the condition
that they all have the same sign for ReZi. Surprisingly if the
positions of the charges are each determined by (1.2), a
common supersymmetry is preserved for the entire multi-
particle configuration. This is quite different than the case
of fluxless Calabi-Yau-Minkowski compactifications,
where there is a common supersymmetry only if the
charges are aligned. Supersymmetry preservation is pos-
sible only because of the enhanced near-horizon super-
conformal group. This phenomena should have a
counterpart in higher AdS spaces and may be of interest
for braneworld scenarios.

In section IV we consider the problem from the ten-
dimensional perspective. For simplicity we consider only
the AdS2 � S2 � CY3 geometries arising from D0�D4
Calabi-Yau black holes. Adapting the analysis of [6] to this
context, we allow the wrapped branes to induce lower
brane charges by turning on world-volume field strengths.
We will find that there are no static, supersymmetric D0-
branes in global coordinates because they want to accel-
erate off to the boundary of AdS2 (there are static
Bogomol’nyi-Prasad-Sommerfield (BPS) configurations
in Poincaré coordinates). For a D2-brane embedded hol-
omorphically in the Calabi-Yau, we will find that it is half-
BPS and sits at � � tanh�1�sin�CY�. Here, �CY is related
to the amount of magnetic flux on the world-volume. All
D2-brane that are static with respect to a common global
time in AdS2 preserve the same set of half of the super-
symmetries regardless of�CY . Similar conclusions hold for
D4, D6-branes wrapped on the Calabi-Yau. We also con-
sider a D2-brane wrapped on the S2 of the AdS2 � S2

product and find that it is once again half-BPS and sits at
� � tanh�1�sin�S2�.

A related problem is the case of supersymmetric multi-
D0-brane configurations which generate higher brane
charges via the Myers effect. This is considered in a com-
panion paper [7].
-1  2005 The American Physical Society



2We use the term zerobrane in a general sense and do not
specifically refer here to a ten-dimensional D0-brane.
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II. PRELIMINARIES

In this section we briefly review some material which
will be needed for our analysis. We are interested in type
IIA string theory compactified on a Calabi-Yau 3-fold M,
with 2-cycles labeled by �A, where A � 1; 2; � � � ; n 	 h11.
The low energy effective theory is N � 2 supergravity
coupled to n vector multiplets (and also h21 � 1 hyper-
multiplets which are not relevant in our discussion). This
theory can be described using special geometry [8–12] and
here we will follow the notation of [8]. The scalar compo-
nents of the vector multiplets are described in terms of
projective coordinates XI, I � 0; 1; � � � ; n. The prepoten-
tial F�XI� is holomorphic and homogeneous of degree 2 in
the XI’s. In the large volume limit F is of the form

F � DABC
XAXBXC

X0 � � � � (2.1)

where DABC � � 1
6CABC, CABC being the triple intersec-

tion number of the 4-cycles dual to�A, which we denote by
�A.

Extremal black holes of magnetic and electric charge
�p0 � 0; pA; q0; qA� are realized as a D4-brane wrapped on
4-cycle P �

P
pA�A bound with q0 D0-branes, together

with qA gauge field fluxes through the 2-cycles �A. The
asymptotic values of the moduli fields XI; FI 	 @IF at
infinity can be arbitrary. However at the black hole horizon
they approach the fixed point values determined from the
‘‘attractor equations’’ [1,2]

pI � ReCXI; qI � ReCFI: (2.2)

Using the tree level prepotential (2.1), the fixed points of
the moduli are [13,14]

CX0 � i

�����
D
q̂0

s
; CXA � pA �

i
6

�����
D
q̂0

s
DABqB (2.3)

where

D 	 DABCp
ApBpC; (2.4)

q̂ 0 	 q0 �
1

12
DABqAqB; (2.5)

DAB 	 DABCp
C; (2.6)

DABDBC � #AC: (2.7)

The near-horizon geometry of the 4D extremal black
hole is AdS2 � S2 with the moduli at their attractor values.
We are interested in string theory on the global AdS2 �
S2 �M geometry. The radius R of AdS2 and S2, which is
the same as the radius of the extremal black hole, is
determined in terms of the charges �pI; qI� via

R �
���
2

p
�Dq̂0�1=4 (2.8)
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where hereafter we work mainly in four-dimensional
Planck units.

The metric on the Poincaré patch of AdS2 � S2 is

ds2 � R2

�
�dt2 � d%2

%2 � d�2 � sin2�d�2

�
(2.9)

while the metric is

ds2 � R2��cosh2�d�2 � d�2 � d�2 � sin2�d�2�

(2.10)

in global coordinates. In much of this paper we deal with
the case qA � 0, and here the Ramond-Ramond (RR) field
strengths are

F�2� �
1

R
!AdS2 ; F�4� �

1

R
!S2 ^ J; (2.11)

where !AdS2 � R2 cosh�d� ^ d� is the volume form on
AdS2, !S2 � R2 sin�d� ^ d� is the volume form on the
S2, and J is the Kähler form on the Calabi-Yau. In particu-
lar, the Kähler volume of the 2-cycles �A are determined
by the charges as

1

2(�0

Z
�A
J � 2(pA

�����
q0
D

r
: (2.12)
III. FOUR-DIMENSIONAL ANALYSIS

Flux compactifications on a Calabi-Yau threefold are
described by an effective d � 4, N � 2 supergravity
with an AdS2 � S2 vacuum solution whose moduli are at
the attractor point with charges �pI; qI�. This theory con-
tains zerobranes2 with essentially arbitrary charges �uI; vI�
arising from various wrapped brane configurations. The
�-symmetric world line action of these zerobranes was
determined in [5]. In this section we use the results of [5]
to determine the possible supersymmetric world line
trajectories.

The Killing spinor equation is

r)*A �
i
2
*ABT�

)+,+*B � 0; (3.1)

where *A, *A � �*A�� (A � 1; 2) are chiral and antichiral
R-symmetry doublets of spinors. T� is the anti-self-dual
part of the graviphoton field strength, satisfying

ZBH �
1

4(

Z
S2
T� � e�K=2�FIp

I � XIqI�; (3.2)

where K � � lni�XIFI � XIFI� is the Kähler potential.
Define the phase of the central charge ei� � ZBH=jZBHj.
Then we can write T� � �iei��1� i��F, where F �
1
R!AdS. In terms of the doublet of spinors �*1; *

2� and
�*1; *2�, the Killing spinor equation can be written as
-2



SUPERSYMMETRIC BRANES IN AdS2 � S2 � CY3 PHYSICAL REVIEW D 71, 066008 (2005)
r)*�
i
2
e�i�,5F6 ,)%2* � 0: (3.3)

Note that there is an ambiguity in choosing the overall
phase of the moduli fields and the central charge,

XI ! ei�XI; FI ! ei�FI; *! e�i=2��,5*; (3.4)

so we are free to set � � 0.
The solutions to the Killing spinor equation in global

AdS2 � S2 coordinates (2.10) are [15]

* � exp
�
�
i
2
�,0%2

�
exp

�
i
2
�,1%2

�
R��;��*0 (3.5)

R��;�� 	 exp
�
�
i
2
��� (=2�,012%2

�

� exp
�
�
i
2
�,013%2

�
(3.6)

where *0 is a doublet of arbitrary constant spinors.
Alternatively, in the Poincaré metric (2.9), the Killing
spinors are [16]

* � %�1=2R��;��*�0 and

* � �%1=2 � i%�1=2t,1%2�R��;��*�0 ; (3.7)

where *�0 are constant spinors satisfying �i,0%2*�0 �
�*�0 , and R��;�� denotes the rotation on the S2 as in
(3.5). Note that ,) are the normalized gamma matrices
in the corresponding frame.

The zerobrane action constructed in [5] has a local
�-symmetry parameterized by a four-dimensional spinor
doublet �A on the world line. In addition the spacetime
supersymmetries *A act nonlinearly in Goldstone mode on
the world line fermions. In general [17], a brane configu-
ration trajectory will preserve a spacetime supersymmetry
generated by * if the action on the world-volume fermions
can be compensated for by a � transformation. This con-
dition can typically be written

�1� ��* � 0 (3.8)

where � is a matrix appearing in the �-transformations. For
the case at hand it follows from the results of [5] that the
condition is

*A � ei’��0�*AB*
B � 0 (3.9)

*A � e�i’��0�*
AB*B � 0 (3.10)

where ��0� is the gamma matrix projected to the zerobrane
world line, and ei’ is the phase of the central charge Z of
the zerobrane,

Z � e�K=2�uIFI � vIX
I� � ei’jZj; (3.11)

where �uI; vI� are its magnetic and electric charges. In
terms of the spinor doublet, one can write (3.9) as
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�ie�i’,5��0�%2* � *: (3.12)

Let us solve the condition for (3.12) to hold along the world
line of a zerobrane sitting at constant ��; �;��. Writing the
Killing spinor as

* � exp
�
�
i
2
�,0%2

�
exp

�
i
2
�,1%2

�
*00 (3.13)

where *00 � R��;��*0, it suffices to solve

�ie�i’,5,0%2 exp
�
�
i
2
�,0%2

�
*00 � exp

�
�
i
2
�,0%2

�
*00

(3.14)

�ie�i’,5,0%2 exp
�
�
i
2
�,0%2

�
,1%2*00

� exp
�
�
i
2
�,0%2

�
,1%2*00: (3.15)

Some straightforward algebra simplifies the above equa-
tions to

�i,0%2�cos’� i cosh� sin’,5

� sinh� sin’,5,0%2�*00 � *00
(3.16)

i,0%2�cos’� i cosh� sin’,5

� sinh� sin’,5,
0%2�*00 � *00:

(3.17)

A solution exists only when

tanh� � cos’; (3.18)

and therefore cosh� sin’ � �1. Correspondingly, the
constraints on *00 become

,5,0%2*00 � �*00; (3.19)

where the sign on the RHS depends on the sign of sin’.
This may be written as a condition on *0,

�1� e�i=2��,
013%2

ei���(=2�,
012%2

e�i=2��,
013%2

,5,0%2�*0 � 0;

(3.20)

which makes it clear that zerobranes sitting at antipodal
points on the S2 will preserve opposite halves of the space-
time supersymmetries.

We conclude that a zerobrane following its charged
trajectory in AdS2 � S2 is half-BPS. The ‘‘extremal’’
case ’ � 0 and ( corresponds to the probe zerobrane
with its charge aligned or antialigned with the charge of
the original black hole. They cannot be stationary with
respect to global time in the AdS2. Using the Killing
spinors on the Poincaré patch (3.7), it is clear that the
extremal zerobranes following their charged trajectories
(static on the Poincaré patch) are also half-BPS. In the
special case ’ � (=2 in (3.18) the zerobrane moves along
an uncharged trajectory and experiences no electromag-
-3
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netic forces . This corresponds to the case when the zero-
brane charge is orthogonal to all the black hole charges.

A somewhat surprising feature is that there are super-
symmetric multiparticle configurations of zerobranes with
unaligned charges. All ‘‘positively-charged’’ zerobranes
with 0<’<( preserve the same set of half of the super-
symmetries, and all ‘‘negatively-charged’’ zerobranes with
�(<’< 0 preserve the other set. Using the attractor
equations the positive charge condition can be written in
terms of the symplectic product of the black hole and
zerobrane charges as

uIqI � pIvI > 0: (3.21)

Given an arbitrary collection of zerobranes obeying (3.21)
there is a half-BPS configuration with the position of each
trajectory determined in terms of the charges of the zero-
brane by (3.18). Of course, such a supersymmetric con-
figuration of particles with unaligned charges is not
possible in the full black hole geometry prior to taking
the near horizon limit. The preserved supersymmetry is
part of the enhanced near-horizon supergroup.

This result is consistent with the expectation from the
BPS bound. The energy of a charged zerobrane sitting at
position � the AdS2 is given by

H � jZj cosh��
Re�Z �ZBH�
jZBHj

sinh�

� jZj�cosh�� cos’ sinh��: (3.22)

where the first term comes from the gravitational warping,
and the second term comes from the coupling to the gauge
field potential. At the stationary point tanh� � cos’, the
energy of the zerobrane is

jZ sin’j �
jImZ �ZBHj
jZBHj

: (3.23)

Therefore, as long as Im�Z �ZBH� is always positive (or
negative), the BPS energy for multiple zerobranes is addi-
tive, in agreement with the supersymmetry analysis above.

IV. TEN-DIMENSIONAL ANALYSIS

In this section we analyze supersymmetric brane con-
figurations from the point of view of the ten-dimensional
IIA theory on AdS2 � S2 � CY3. For simplicity we will
focus on specific examples rather than the most general
solution.

The extremal black hole in type IIA string theory com-
pactified on a Calabi-Yau manifold M preserves four
supersymmetries. After we take the near-horizon limit,
the number of preserved supersymmetries doubles to eight.
We consider a background with only D0 and D4-brane
charges, i.e. qA � p0 � 0, so that according to the attractor
equations there is no B-field. The RR field strengths in the
resulting AdS2 � S2 �M6 are given as in (2.11). As shown
in Appendix A, the ten-dimensional Killing spinor doublet
066008
is of the form

"1 � *1 � 3� � *1 � 3�; (4.1)

"2 � *2 � 3� � *2 � 3�; (4.2)

where 3�; 3� � 3�
� are the chiral and antichiral

covariantly-constant spinors on M; *A � �*A��, *1;2 are
four-dimensional chiral spinors satisfying the four-
dimensional Killing spinor equation

r)*A �
i
2
F6 �2�,)�%2�AB*B � 0: (4.3)

This is the same equation as (3.3) with � � 0, and the
solutions are given by (3.5) and (3.7).

We want to find all the BPS configurations of D-branes
that are wrapped on compact portions of our background,
and are pointlike in the AdS2. In order for the D-brane to be
supersymmetric, we only need to check that the
�-symmetry constraint

�" � " (4.4)

is satisfied, where " is the Killing spinor corresponding to
the unbroken supersymmetry (more precisely, the pullback
onto the brane world-volume). The � projection matrix is
given by [18–21]

� �

����������
detG

p

�������������������������
det�G�F �

p X
n

1

2nn!
�)̂1+̂1���)̂n+̂nF )̂1+̂1 � � �F )̂n+̂n

� �n��p�2�=2
�10� ��0�%

1; (4.5)

��0� �
1

�p� 1�!
����������
detG

p *)̂0���)̂p�)̂0���)̂p
; (4.6)

where the hatted indices label coordinates on the brane
world-volume, G is the pullback of the spacetime metric,
and F � F� f��B� (the B-field is zero in our discussion).
See Appendix A for conventions on 10D gamma matrices.
Unless otherwise noted we will work in global coordinates
(2.10).

A. D0-brane

For a static D0-brane in global coordinates, we have
��0� � ,0. The �-symmetry matrix is

� � ��10�,0%1 (4.7)

Writing the doublet " in terms of the 4-dimensional spinor
doublet *

" � * � 3� � *� � 3�; (4.8)

The matrix � acts on " as ,0%1%3 � �i,0%2. The
�-symmetry constraint (4.4) becomes

�1� i,0%2�* � 0: (4.9)

Using the explicit solutions of the Killing spinors in global
-4
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AdS (3.5), we see that (4.9) cannot be satisfied at all �, so a
D0-brane static in global AdS can never be BPS. This is of
course expected since the charged trajectory cannot be
static in global coordinates. On the other hand, using
(3.7) we see that a D0-brane static with respect to the
Poincaré time is always half-BPS, as expected.

B. D2 wrapped on Calabi-Yau, F� 0

Now let us consider a D2-brane wrapped onM and static
in global AdS2 � S2, without any world-volume gauge
fields turned on. The �-symmetry matrix is

� �
1

2
������������
det0G

p ,0*â b̂�â b̂%
1 (4.10)

where det0 takes the determinant of the spatial components
of the world-volume metric. Acting on ", we have

�â b̂" � @âX
I@b̂X

J,IJ" (4.11)

� 2@âX
i@b̂X

�j,i �j"� @âX
i@b̂X

j,ij"� @âX
�i@b̂X

�j,�i �j"

(4.12)

� 2@âX
i@b̂X

�j��gi �j,�6��"

�

�
1

2
@âXi@b̂X

j�ijk* � ,k3� � c:c:
�
:

(4.13)

The �-symmetry constraint �" � " implies
*â b̂@âXi@b̂X

j�ijk � 0, which means that the D2-brane
must wrap a holomorphic 2-cycle. It then follows that �
acts on " as �" � i,0,�6�%1" � ,�4�,0%2". Therefore
(4.4) becomes

�1� ,�4�,0%2�* � 0: (4.14)

It is clear that the wrapped D2-brane sitting at � � 0 in
AdS2 is half-BPS. Note that the D2-brane without gauge
field flux does not feel any force due to the RR fluxes
(qA � 0), so its stationary position is at the center of AdS2.

C. D2 wrapped on Calabi-Yau, F� 0

With general world-volume gauge field strength F
turned on, the matrix � is

� �
1�������������������������

det0�G� F�
p �

1�
1

2
�â b̂Fâ b̂��10�

�
,0

�
1

2
*ĉ d̂�ĉ d̂

�
%1

(4.15)

An argument nearly identical to the one given in [6] shows
that the supersymmetric D2-brane must wrap a holomor-
phic 2-cycle, and the gauge flux F satisfies����������

detG
p

������������������������
det�G� F�

p �f�J� iF� � ei� vol2 (4.16)

where vol2 is the volume form on the D2-brane (which is
just f�J for a holomorphically wrapped brane), and � is a
066008
constant phase determined in terms of the D0-brane charge
2(n � 1=2(�0

R
F via

tan�
2(�0

Z
J � 2(n: (4.17)

If the probe D2-brane is wrapped on the 2-cycle ��2� �
nA�A, then using (2.12) we have

tan� �
n

nApA

�����
D
q0

s
(4.18)

Note that from (4.16) we have cos�> 0, since J is positive
when restricted to holomorphic cycles. The �-symmetry
condition then becomes

�1� e�i�,�4�,�4�,0%2�* � 0 (4.19)

These is identical to (3.12) if we set’ � �� (=2. We can
immediately read off the conditions for the static D2-brane
to preserve supersymmetry when it sits at � � (=2,� � 0
in the S2:

sin� � tanh�; cos� � sech�;

�1� ,�4�,0%2�*0 � 0:
(4.20)

We see that for general �(=2<�<(=2, the D2-brane
sits at � � tanh�1�sin�� and is half-BPS. In fact they all
preserve the same half supersymmetries, as discussed in
section III. Anti-D2-branes with gauge field fluxes
wrapped on holomorphic 2-cycles will preserve the other
half supersymmetries.

D. Higher dimensional D-branes wrapped on the
Calabi-Yau

Let us consider D4, D6-branes that are wrapped on the
Calabi-Yau and sit at constant position in global AdS2 �
S2. We shall use a trick [21] to write the matrix � as

� � e�A=2��p�2�=2
�10� ��0�e

A=2%1 (4.21)

where

A � �
1

2
Yâ b̂�

â b̂��10� (4.22)

and Yâ b̂ is an antisymmetric matrix (analogous to the phase
� in the previous subsection), related to the gauge field
strength matrix Fâ b̂ by

F � tanhY (4.23)

By the same arguments as before, one can show that the
BPS D-branes must wrap holomorphic cycles. Note that A
acts on the Killing spinor " as A" � �iYâ b̂�f

�J�â b̂,�4�",
and ��0� acts as ,0�i,�6��

p=2 (see Appendix). Let us define

� � �Yâ b̂�f
�J�â b̂. The �-symmetry constraint can be

written as
-5
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�" � e�i�,�4�=2��p�2�=2
�10� ,0�i,�6��

p=2ei�,�4�=2%1" � ":

(4.24)

We can simplify this to

�ie�i���p(=4�,�4�,0%2* � *: (4.25)

This equation indeed agrees with (4.9) and (4.19) in the
cases p � 0; 2. It is also identical to (3.12) provided we set
’ � �� p(=4. So we conclude that a general Dp-brane
(p even) wrapped on a holomorphic cycle in the Calabi-
Yau, possibly with world-volume gauge fields turned on,
static in the S2 and following its charged trajectory in the
AdS2 is half-BPS. As in [6] there is a deformation of the
supersymmetry condition on the world-volume gauge field
F. In particular, the D-brane sits at tanh� � cos���
p(=4�.

E. D2 wrapped on S2, F� 0

Now let us turn to D2-branes wrapped on the S2 appear-
ing in the AdS2 � S2 �M product. The �-symmetry ma-
trix is � � ��0�%

1 � ,023%1. (4.4) can be written as

�1� ,023%1�* � 0: (4.26)

Defining R��;�� to be the S2-dependent factors in (3.5),
this condition becomes

�1� ,023%1� exp
�
�
i
2
�,0%2

�
R��;��*0 � 0; (4.27)

�1� ,023%1� exp
�
�
i
2
�,0%2

�
,1%2R��;��*0 � 0:

(4.28)

A little algebra reduces these to

cosh
�
2
�1� ,023%1�R��;��*0

� sinh
�
2
�1� ,023%1�R��;��*0 � 0: (4.29)

The only way to satisfy both equations is to set � � 0.
Since ,023%1 commutes with R��;��, we end up with the
condition

�1� ,023%1�*0 � 0: (4.30)

We conclude that the D2-brane sitting at the center of AdS
and wrapped on the S2 is half-BPS.

F. D2 wrapped on S2, F� 0

With gauge field strength F � f!S2 turned on, the
�-symmetry matrix acts on " as

�" �

����������
detG

p

������������������������
det�G� F�

p �
1�

1

2
�â b̂Fâ b̂��10�

�
��0�%

1" (4.31)
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�
1��������������

1� f2
p �1� ,23f��10��,023%1" (4.32)

� exp��,23��10��,023%1" � ,023%1 exp��,23%3�";

(4.33)

where f 	 tan� ( cos�> 0). The condition (4.4) then
becomes

�1� cos�,023%1 � i sin�,0%2�

� exp
�
�
i
2
�,0%2

�
R��;��*0 � 0; (4.34)

�1� cos�,023%1 � i sin�,0%2�

� exp
�
i
2
�,0%2

�
R��;��*0 � 0; (4.35)

A little algebra yields

�1� sin� coth��*0 � 0; (4.36)

�1� ,023%1 cot� sinh��*0 � 0: (4.37)

This means that sin� � � tanh�. In particular �, hence f,
is constant on the world-volume. The condition on *0
becomes

�1� ,023%1�*0 � 0: (4.38)

These D-brane configurations are again half-BPS.

G. D-branes wrapped on S2 and the Calabi-Yau

In general for a Dp-branes wrapped on S2 times some
�p� 2�-cycle in the Calabi-Yau, and static in global AdS2,
the matrix � is essentially the product of the piece on S2

and the piece on Calabi-Yau,

�" � exp���S2,
23%3� exp��i�CY,�4��

� �i,�4��
�p�2�=2,023%1" (4.39)

where �CY and �S2 are the phases related to the world-
volume gauge flux along the Calabi-Yau and S2 directions
as before. Define ’CY � �CY � �p� 2�(=4, ’S2 �
�S2 � (=2. The �-symmetry constraint can be written as

�i exp��’S2,
23%3 � i’CY,�4��,0%2* � * (4.40)

This is equivalent to

�1�i exp��’S2,
23%3 � i’CY,�4��,

0%2�

� exp
�
�
i
2
�,0%2

�
R��;��*0 � 0; (4.41)

�1� i exp�’S2,
23%3 � i’CY,�4��,0%2�

� exp
�
i
2
�,0%2

�
R��;��*0 � 0: (4.42)

A little algebra yields
-6
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�sinh��cosh�cos�’S2 � i,�4�,23%3’CY��R��;��*0�0;

(4.43)

�cosh�� sinh� cos�’S2 � i,�4�,23%3’CY� (4.44)

�,023%1 sin�’S2 � i,�4�,23%3’CY��R��;��*0 � 0;

(4.45)

If ’CY and ’S2 are both nonzero, the first equation can be
satisfied only if

i,�4�,
23%3R��;��*0 � mR��;��*0; m � �1: (4.46)

However, since ,�4�,
23%3 does not commute with R��;��

at generic points on the S2, (4.46) can never be satisfied.
Therefore such wrapped D-branes cannot be BPS.

If ’S2 � 0, ’CY � 0, we have

tanh� � cos’CY (4.47)

and

�1� ,�4�,0%2�R��;��*0 � 0: (4.48)

However, in this case again ,�4�,
0%2 does not commute

with R��;�� for generic ��;��, and hence (4.48) has no
solution.

If ’S2 � 0, ’CY � 0, we find

tanh� � cos’S2 (4.49)

and the second equation in (4.43) becomes

�1� ,023%1�*0 � 0 (4.50)

We see that such D-branes are half-BPS.
So far we have neglected an important subtlety. For D4

or D6-branes wrapped on S2 times some cycle in the
Calabi-Yau, the RR flux F�4� induces couplings of gauge
fields on the brane world-volumeZ

D4
A ^ F�4�; (4.51)

Z
D6
A ^ F ^ F�4�; (4.52)

Since F�4� �
1
R!S2 ^ J, we see that for the D4-brane

wrapped on S2 � �2 (��2� � nA�
A), the RR flux induces

an electric charge density on the brane world-volume, of
total charge

Q �
1

2(gs

Z
S2��2

F�4� �
X
nAp

A (4.53)

Since the world-volume is compact, the Gauss law con-
straint requires the total charge to vanish. So we cannot
wrap only a single D4-brane on S2 ��. One must intro-
duce fundamental strings ending on the brane to cancel the
electric charges. We then have

P
nApA fundamental

strings ending on the D4-brane, and runoff to the boundary
066008
of AdS. This is interpreted as a classical ‘‘baryon’’ in the
dual CFT.

Similarly for the D6-brane wrapped on S2 � �4, one
would have nonzero total electric charge on the world-
volume if

R
�4
F ^ J � 0. This again corresponds to certain

‘‘baryons’’ in the dual CFT.
Finally, a D6-brane wrapped on S2 ��4 with general

gauge field flux in the S2 is half-BPS, as shown in (4.49)
and (4.50).
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APPENDIX: THE 10-DIMENSIONAL KILLING
SPINORS

In order to write a ten-dimensional spinor as the tensor
product of four-dimensional and internal (Calabi-Yau)
spinors, it is necessary to work with a tensor product of
Clifford algebras. Let �M denote the ten-dimensional
Clifford algebra matrices, with M � 0; . . . ; 10, ) �
0; . . . ; 3, and m � 4; . . . ; 9. We can decompose the �M

into a tensor product of four and six-dimensional Clifford
matrices, denoted by ,) and ,m, as

�) � ,) � 1; (A1)

�m � ,�4� � ,m: (A2)

Using a mostly-positive metric signature, the following
matrices have the desired properties that they anticommute
with the appropriate gamma matrices and square to one:

��10� � ��0123456789; (A3)

,�4� � i,0123; (A4)

,�6� � i,456789: (A5)

With these sign conventions, ��10� decomposes in the de-
sired way as ��10� � ,�4� � ,�6�.

As an ansatz for the Killing spinors, we assume they take
the form

"1 � *1 � 3� � *1 � 3�; "2 � *2 � 3� � *2 � 3�;

(A6)

where the "’s are 10D Majorana-Weyl spinors, the 3’s are
6D covariantly-constant Weyl spinors on the Calabi-Yau,
and the *’s are 4D Majorana spinors. We use chiral nota-
tion in which the chirality of the spinor is denoted by the
position of the R-symmetry index. In particular, *�A� �
*A � *A where ,�4�*

A � *A and ,�4�*A � �*A. Of course,
there are no Majorana-Weyl spinors in 3� 1 dimensions;
the four-dimensional chiral projections are related by *A �
-7



SIMONS, STROMINGER, THOMPSON, AND YIN PHYSICAL REVIEW D 71, 066008 (2005)
*A�. For the six-dimensional Weyl spinors, we use the
standard notation where ,�6�3� � �3�. Since we will
work with type IIA, the tensor products have been chosen
such that the ten-dimensional spinors are of opposite chi-
rality. In doublet notation,

" �
"1
"2

� �
(A7)

��10�" can be written as �%3". In addition, the following
identities for the spinors 3� will be useful:

,�i3��0; ,ijk3���ijk3�; ,ij3��
1

2
�ijk,

k3�;

,�i �jkl3���gk �jgl�i�gk�igl �j�3�;
(A8)

,i3��0; ,�i �j �k3����i �j �k3�; ,�i �j3��
1

2
��i �j �k,

�k3�;

,ij �k �l3���g �kjg�li�g �kig�lj�3�:
(A9)

Given these Ansätze, we want to check that the super-
symmetry variations of the background vanish modulo
conditions on the four-dimensional Majorana components
of the Killing spinors. Since we work only with bosonic
backgrounds, we need only check the variations of dilatino
and gravitino.

The supersymmetry variation of the dilatino is [22]

#? �
1

2
�3F6 �2�i%

2 � F6 �4�%
1�"; (A10)

where F�2� �
1
R!AdS2 and F�4� �

1
R!S2 ^ J. Taking note of

the fact that g�ij,�ij3� � 3,�6�3� and !6 S2 � �i!6 AdS2,�4�,
we find that

F6 �4�" � �3i!6 AdS2,�4�,�6�" � �3F6 �2�%3": (A11)

As a result, the dilatino variation vanishes automatically.
The gravitino variation is

# M � rM"�
1

8
�F6 �2��Mi%2 � F6 �4��M%1�" � 0:

(A12)

When the free index is holomorphic in the Calabi-Yau, this
reduces to the following condition:
066008
�F6 �2�,mi%2 � F6 �4�,m%1�" � 0: (A13)

Using the fact that gi �j,i �j,m3� � ,m,�6�3�; we find that
F6 �4�,m" � �F6 �2�,m%3": This works similarly for an anti-
holomorphic index, so the gravitino variation is identically
zero when the free index is in the Calabi-Yau.

When the gravitino equation has its free index in the
AdS2 � S2 space, the variation becomes

# ) �

�
r) �

1

8
,)�F6 �2�i%2 � %1F6 �4��

�
" � 0; (A14)

where the � is � if) is in the S2 and � if) is in the AdS2.
Using the same identity used for the dilatino equation, we
get

# ) �

�
r) �

i
2
,)F6 �2�%2

�
" �

�
r) �

i
2
F6 �2�,)%2

�
":

(A15)

Demanding that the terms linear in 3� and linear in 3�

must vanish separately, we get the 4D equations�
r) �

i
2
F6 �2�,)%

2

�
* � 0; (A16)

where * �
*1
*2

� �
.

It is useful to derive the action of ��0� �
1

�p�1�!
�������
detG

p *)̂0���)̂p�)̂0���)̂p
on the 3� which live on the

world-volume of holomorphically wrapped D-branes (see
(4.5)). For D0-branes we have simply ��0� � ,0. For D2-
branes, we have

��0�3� � ,0*i �j,i �j3� � i,0,�6�3� (A17)

For D4-branes, we have

��0�3� � ,0 1

4
*i �jk�l,i �jk�l3� � �,03� (A18)

where we used the last column of (A8). Finally for D6-
branes, we have ��0� � �i,0,�6� using (A3). These for-
mulas can be summarized as ��0�" � ,0�i,�6��

p=2".
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