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Descent relations in type-0A and type-0B theories

David Mattoon Thompson*
Jefferson Physical Laboratory, Harvard University, Cambridge, Massachusetts 02138

~Received 4 December 2001; published 14 May 2002!

The type-0 theories have twice as many stable D-branes as the type II theories. In light of this added
complication, we find the descent relations for D-branes in the type-0A and 0B theories. In addition, we work
out how the two types of D-branes differ in their couplings to NS-NS~Neveu-Schwarz! fields.
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INTRODUCTION

In this paper, we gain further insight into type-0 D-bran
by working out the descent relations for type-0 theori
Sen’s descent relations in the type-II theories relate differ
D-branes through operations of orbifolding and tachy
kinking. These relations form an interlocking chain of re
tionships between the different types of D-branes. Althou
the type-0 theories are in many ways similar to the type
theories, it is not immediately clear how one should draw
descent relation diagram since type-0 theories have twice
number of D-branes. This problem is addressed in Secs
through V.

Sections I and II serve as very brief introductions to t
type-0 theories and their D-brane content. In Sec. III,
review the descent relations in type-II theories and we m
age to rule out certain combinations of type-0 D-branes fr
having any starring role in the type-0 descent relations
Secs. IV and V, we uncover how the type-0 D-branes
related via orbifolds and kinks, respectively. By the end
Sec. V, we have pieced together the type-0 descent relat

Section VI demonstrates the fundamental distinction
tween the two types of D-branes in type-0 theories. We sh
in Sec. VI that the two types of D-branes, D1 branes and
D2 branes, have opposite charges with respect to
~NS2,NS2! Neveu-Schwarz fields. We will also show ho
a general disk amplitude with a D1 relates to the same am
plitude with a D2.

I. PERTURBATIVE SPECTRUM

Type-II superstring theories are composed of left- a
right-moving pieces which reside in one of four secto
NS6 and Ramond6 (R6). The 1 and2 here denote the
value of the worldsheet fermion number operator, (21)F,

not to be confused with the (21)FL
s

operator to be intro-
duced later. At first blush, it appears as though there are
the order of 216 possible string theories, each factor of
coming from whether or not a given theory contains a p
ticular combination of sectors. Several consistency con
tions pare this enormous number of possibilities to only fo
Two of these are the type-IIA and -IIB theories. The oth
two are the less familiar type-0A and -0B theories. The c
sistency conditions are as follows~for a review, see@1#!.
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Level matching. The first condition we use to rule ou
some theories is the level matching conditionL05L̃0. The
NS2 sector has half-integer levels while the NS1, R1,
and R2 have integer levels. Therefore, NS2 cannot be
paired with any of the other three sectors.

Mutual locality. All pairs of vertex operators must be mu
tually local. That is, the phase obtained by taking one ver
operator in a circle around the other must be unity or e
there is phase ambiguity in the amplitude.

Closed OPE. The operator product expansion~OPE! of
the vertex operators in the theory must be in terms of ver
operators that are also present in the theory.

Modular invariance. Modular invariance requires tha
there be at least one left moving R sector and at least
right moving R sector.

The only four theories that satisfy these simple cons
tency requirements are the type-IIA theory,

~NS1,NS1! ~R1,R2! ~NS1,R2! ~R1,NS1! ~1a!

the type-IIB theory,

~NS1,NS1! ~R1,R1! ~NS1,R1! ~R1,NS1!
~1b!

the type-0A theory,

~NS1,NS1! ~NS-,NS2! ~R1,R2! ~R2,R1!
~2a!

and the type-0B theory,

~NS1,NS1! ~NS2,NS2! ~R1,R1! ~R2,R2!.
~2b!

The perturbative spectra of the type-0 theories contain
spacetime fermions. In the NS-NS sectors, the low-ly
states are the tachyon from (NS2,NS2) and the graviton,
antisymmetric tensor, and dilaton from (NS1,NS1). The
type-0 theories have twice as many massless R-R state
the type-II theories. In particular, type 0A has two R-
1-forms and two R-R 3-forms; type 0B has two R-R scala
two R-R 2-forms, and one R-R 4-form with an unconstrain
5-form field strength.

II. D-BRANES

The fact that the type-0 theories have twice as many R
fields as the type-II theories is an indication that there m
©2002 The American Physical Society05-1
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be twice as many stable D-branes in type 0 as compare
type II. This turns out to be correct and can be underst
quite directly by examining D-branes in the boundary st
formalism~for a review, see@2#!. In this formalism, D-branes
are represented by boundary states for the physical clo
strings. These boundary states are themselves coh
closed string states.

In both the type-II and type-0 theories, there are fo
types of boundary states for each p,

uBp,1&NS-NS, uBp,2&NS-NS, uBp,1&R-R,
o
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uBp,2&R-R. ~3!

The 1 and2 denote the boundary conditions on the worl
sheet fermions and superghosts as in Eqs.~27!. Linear com-
binations of these states must be taken to form D-br
boundary states which, in turn, must be GSO-invariant a
must satisfy certain consistency conditions@2#.

The D-brane boundary states in the type-0 theories ar
follows:
uDp,1&5uBp,1&NS-NS1uBp,1&R-R

uDp,2&5uBp,2&NS-NS1uBp,2&R-R

uD̄p,1&5uBp,1&NS-NS2uBp,1&R-R

uD̄p,2&5uBp,2&NS-NS2uBp,2&R-R

6 for p even ~odd! in OA ~OB! ~4!

uDp̂,1&5uBp,1&NS-NS

uDp̂,2&5uBp,2&NS-NS
J for p odd ~even! in OA ~OB!. ~5!
ec-

e

pen

e

yon

ent
Using h to denote61, the uDp,h& states correspond t
stable D-branes. We see from the minus sign in front of
R-R boundary states that theuD̄p,h& states correspond t
stable anti-D-branes. TheuDp̂,h& states correspond to un
stable D-branes.

Let us pause for a second to make a remark on D-br
stability. The condition for stability is that the spectrum
open strings on the D-brane does not contain a tachyon.
important not to confuse this condition with being
Bogomol’nyi-Prasad-Sommerfield~BPS! object. Of course,
none of the D-branes can be BPS in the type-0 theories s
there is no supersymmetry to begin with; there are no fer
ons in the absence of D-branes. It just so happened
D-branes in the type-II theories that the conditions of sta
ity and BPS coincided.

It will be important for our purposes to find the spectra
open strings living on or between D-branes. The details
be found in Appendix A and the results for type-0 D-bran
are given in Tables I and II. The spectra in Table I can

TABLE I. All other cases obtained by one or both of th
following operations under which the spectrum is invaria

1↔2, D↔D̄.

Open spectrum on stable D-branes
~p odd in 0B, p even in 0A!

s50 s5p Spectrum

Dp1 Dp1 NS1

Dp1 D̄p1 NS2

Dp1 Dp2 R1

Dp1 D̄p2 R2
e

e

is

ce
i-
or
l-

f
n

s
e

extrapolated to all possibilities by noting that a given sp
trum is invariant under the replacements D↔D̄ and/or
1↔2. For example, from the first line of Table I, we se
that the open strings beginning on a Dp1 and ending on a
Dp1 are NS1. Therefore, the strings beginning on a Dp̄1

and ending on a D̄p1 are NS1. Similarly, strings beginning
on a Dp2 and ending on a Dp2 ~or beginning on a D̄p2

and ending on a D̄p2) are also NS1.
We see that there are two tachyons among the o

strings stretched between auDp,h& and a uD̄p,h&. One
tachyon starts~at s50) on the uDp,h& and ends~at s

5p) on the uD̄p,h&, and the other tachyon starts on th
uD̄p,h& and ends on theuDp,h&. This indicates an instability
in the DD̄ pair.

We see in Table II, as expected, that there is a tach
living on the unstableuDp̂,h& D-branes.

III. DESCENT RELATIONS

Sen’s descent relations give relations between differ
D-brane configurations in the type-II theories~for a review,

:

TABLE II. All other cases obtained by1↔2 under which the
spectrum is invariant.

Open spectrum on unstable D-branes
~all p in 0A and 0B!

s50 s5p Spectrum

Dp̂1 Dp̂1 NS1, NS2

Dp̂1 Dp̂2 R1, R2
5-2
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see @3#!. The two important operations are orbifolding b

(21)FL
s
, whereFL

s is the spacetime fermion number of th
left-movers, and kinking the tachyon field that lives on u
stable configurations of D-branes. Starting with a coincid

D(2p)D̄(2p) pair in type IIA, orbifolding by (21)FL
s

yields
an unstable D(2p)ˆ in type IIB. Orbifolding one more time
leaves us with a stable D~2p! in the type-IIA theory. Starting
again with the D(2p)D̄(2p) pair in type IIA, but this time
kinking the tachyon field that lives on the D-branes, we
left with an unstable D(2p-1)ˆ in type IIA. Kinking the re-
maining tachyon field gives us a stable D(2p22) in type
IIA. The results are similar if we start with a D(2p

11)D̄(2p11) pair in type IIB. In fact, the descent relation
form an interlocking chain as shown in Fig. 1.

The natural question at this point is what the analogue
the descent relations is for the type-0 theories. Starting w
a D(2p)D̄(2p) in type 0A, we have four possibilities to con
sider: a choice of1 or 2 for each of the two branes. Then
once we orbifold~kink!, we must figure out whether we ge
D(2p)ˆ 1 or D(2p)ˆ 2@D(2p-1)ˆ 1 or D(2p-1)ˆ 2]. For a dis-
cussion of the differences between D1 and D2 branes, see
Sec. VI.

In the type-II descent relations, every time we orbifold
kink we effectively remove one of the tachyonic degrees
freedom. A complex tachyon lives on the DD¯pair; orbifold-
ing or kinking once gives an unstable D-brane with a r
tachyon; orbifolding or kinking one more time gives a stab
D-brane with no tachyon field. With this observation, we c
quickly rule out two of the choices for the DD¯ pair in the
type-0 case. Since the open string tachyon arises from
NS2 sector, we see from Table I that only the Dp1D̄p1

and Dp2D̄p2 pairs for p odd in 0B~even in 0A! have
tachyon fields living on them.

Holding out some hope for the Dp1D̄p2 pair, let us see
if there is any room in the type-0 descent relations for t
object. Clearly, we cannot consider a tachyon kink sin
there is no tachyonic kink on this pair of D-branes: fro
Table I, we see that there are NS1 strings living on each of
the D-branes and R2 strings stretched between the two. P

haps we can orbifold this pair of D-branes by (21)FL
s
. How-

ever, one can take the (21)FL
s

orbifold in the presence o
D-branes only if that configuration of D-branes is invaria

under (21)FL
s
. For example, in the type-II theories

(21)FL
s
uD(2p)&5uD̄(2p)& and (21)FL

s
uD̄(2p)&5uD(2p)&,

FIG. 1. Descent relations for the type-II theories. Horizon

arrows denote modding by (21)FL
s
. Vertical arrows denote the ta

chyonic kink.
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so we were able to orbifold the DD¯pairs. Since

~21!FL
s
uBp,6&NS-NS5uBp,6&NS-NS,

~21!FL
s
uBp,6&R-R52uBp,6&R-R, ~6!

we see from Eq.~4! that in the type-0 theories

~21!FL
s
uDp1&5uD̄p1&,

~21!FL
s
uDp2&5uD̄p2&, ~7!

and

~21!FL
s
uD̄p1&5uDp1&,

~21!FL
s
uD̄p2&5uDp2&. ~8!

This means that the coincident Dp1D̄p2 pair is not invari-

ant under (21)FL
s

and we no longer consider it as a potent
participant in the type-0 descent relations. Fortunately,

Dp1D̄p1 and Dp2D̄p2 pairsare invariant under (21)FL
s
,

so we will be able to interpret the orbifold as a projection
the open string states.

IV. „À1…F L
s

ORBIFOLD

Here we will consider what happens to the coincide

D(2p)1D̄(2p)1 pair in type 0A under the (21)FL
s

orbifold.
First, let us look at the spacetime bulk far from the D-bran
Locally, this is just type 0A without any open strings. Takin

the orbifold of type 0A by (21)FL
s

gives the type-0B theory
and vice versa~see Appendix B for details!.

As we have already noted in Eqs.~7! and ~8!, (21)FL
s

switches the D(2p)1 and D̄(2p)1, so its action on the
Chan-Paton factors is

L→s1Ls1
21 . ~9!

Of the four Chan-Paton factors,I , s1 , s2, ands3, only I
and s1 are invariant under this operation. Therefore, t
open strings with CP factorsI ands1 are kept and those with
CP factorss2 ands3 are thrown out.

We can see that this new object, the result of orbifoldi
D(2p)1D̄(2p)1, is a single brane since the degrees of fre
dom corresponding to the relative positions of the origin
D-branes have been projected out. The position coordin
corresponding to their respective CP factors are as in Fig

l
FIG. 2. Position zero modes corresponding to open strings in

D-brane system.
5-3
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Writing out the lowest order degrees of freedom in ter
of Chan-Paton factors, we find that we can regroup them

x0S 1 0

0 0D 1y0S 0 0

0 1D 1Fx01
s

p
~y02x0!G S 0 1

0 0D
1Fy01

s

p
~x02y0!G S 0 0

1 0D
5

1

2
~x01y0!I 1

1

2
~x02y0!s31

1

2
~x01y0!s1

1
1

2 F2 i ~x02y0!1
2is

p
~x02y0!Gs2 . ~10!

The (x02y0) degree of freedom multiplies onlys2 ands3,
which are projected out.

After orbifolding, we are left with a~2p!-brane in the
type-0B theory with NS1 strings ~corresponding to I! and
NS2 strings~corresponding tos1) living on it. This identi-
fies the object as either D(2p)ˆ 1 or D(2p)ˆ 2. In order to
distinguish between these two options, we look at the c
pling of this ~2p!-brane to the (NS2,NS2) tachyon and
compare it to the coupling of the D(2p)ˆ 1 and D(2p)ˆ 2 to
the (NS2,NS2) tachyon. But first we must determine wh
these couplings are.

We know from@5# thatstableD-branes in the type-0 theo
ries have the term

2
Tpqq̄

4 E dp11sT~X! ~11!

in their low energy effective action, whereT is the closed
string tachyon, andq and q̄ are the D-brane’s charges und
the massless R-R fieldsC andC̄. The R-R charges of stabl
D-branes in the type-0 theories are given in Table III. Not
that qq̄5h.

We know from cylinder diagrams between D-branes t
the unstableD1̂ and D-̂ have opposite tachyon charge@6#,
but this cannot tell us how to assign the charges to the
types of D-branes. The solution to this can be found by co
paring tachyon tadpole calculations for the stable and
stable D-branes.

The amplitude@7,8# for a stable Dp1 to emit a tachyon is

TABLE III. R-R charges for stable D-branes.

Stable Dp R-R charges
~p odd in 0B, p even in 0A!

q q̄
Dp1 1 1

D̄p1 21 21

Dp2 1 21

D̄p2 21 1
10600
s
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^T,kuDp,1&5^T,ku~ uBp,1&NS-NS1uBp,1&R-R)

5^T,kuBp,1&NS-NS

5^e2F2F̃e2 ik•XuBp,1&NS-NS

5
Tp

2
^e2F2F̃e2 ik•XuBX&uBgh&

3uBc ,h&NS-NSuBsgh,h&NS-NS, ~12!

wherek is perpendicular to the D-brane. Now consider
unstable D(p-1)ˆ 1 that is extended in p21 of the same di-
rections as the Dp1. The amplitude for an unstabl
D(p-1)ˆ 1 to emit a tachyon in the same direction is

^T,kuD~p21!̂,1&5^T,kuB~p21!,1&NS-NS

5
Tp21

2
^e2F2F̃e2 ik•XuBX&8

3uBgh&uBc ,h&NS-NS8 uBsgh,h&NS-NS.

~13!

The only difference between Eqs.~12! and ~13! is the nor-
malization and the matter part of the boundary state. BothTp
and Tp21 are positive constants. The difference betwe
uBX&8 and uBX& is a minus sign on one of theX fields which
does not get contracted with theeik•X of the tachyon sincek
is perpendicular to the Dp1. The difference betweenuBc&8
and uBc& is a minus sign on one of thec fields, but none of
the c fields in the boundary state get contracted with an
thing in the tachyon vertex operator. Therefore, the tach
charge of the unstable D(p-1)ˆ 1 is related to the charge o
the stable Dp1 by a factor of Tp21 /Tp , so the tachyon
tadpole term in an unstableuD(p21)̂,h& brane’s low energy
effective action is

2
Tp21h

4 E dp11sT~X!. ~14!

Note, by comparing Eqs.~11! and~14!, that the Dp1 and the
D(p-1)ˆ 1 couple with the same sign to the closed stri
tachyon.

Since both the closed string tachyon and the NS-
boundary state part of the D-branes both reside in
~NS,NS! sector which is unaffected by the orbifold, the co
pling of the brane to the tachyon should be unchanged. T
means that the D(2p)1D̄(2p)1 in type 0A gets orbifolded
to the D(2p)ˆ 1 of type 0B.

We can understand the orbifold at the level of bound
states by considering the emission and reabsorption of clo
strings by the D(2p)1D̄(2p)1 pair. To simplify our equa-
tions, we introduce the shorthand notation

^^L&&[E dlS uD~2p!1&

uD̄~2p!1&
D †

e2 lH cLS uD~2p!1&

uD̄~2p!1&
D .

~15!
5-4
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In this formalism, the calculation of the cylinder diagram f
an open string with CP factorL can be rewritten as the
closed string exchange amplitude^^L&&. The amplitude for a
closed string to be emitted and reabsorbed by
D(2p)1D̄(2p)1 pair is equal to

K K S 1 1

1 1D L L 5^^I 1s1&&. ~16!

When we orbifold by projecting outs2 ands3, we see that
this amplitude is unchanged. However, we know from o
earlier discussion that the resulting object is a sin
D-brane. Therefore, we should be able to rewrite Eq.~16! as
the emission and absorption of a closed string by a sin
D(2p)ˆ . Attempting this, we find

^^I 1s1&&5H 4E dl^D~2p!̂1ue2 lH cuD~2p!̂1&,

4E dl^D~2p!̂2ue2 lH cuD~2p!̂2&.

~17!

This amplitude can be written in terms of either a D(2p)ˆ 1 or
a D(2p)ˆ 2, but our previous tachyon charge argument sing
out the D(2p)ˆ 1.

If we orbifold one more time by (21)FL
s
, the bulk trans-

forms back to type 0A. The action of the orbifold on th
D-brane’s open string modes can be determined by exam
ing the two-point functions of the theory. The existence
nonzero two-point functions between open strings on
D-brane and closed strings in the bulk allows us to determ

the action of (21)FL
s

on the open strings by requiring th
correlation functions to be invariant. As in the type-II ca
@3#, the orbifold’s effect on the D(2p)ˆ 1 is to project out the
open strings with CP factors1. Removing thes1 from Eq.
~16! leaves the following amplitude for closed string em
sion and absorption:

^^I &&55
2E dl^D~2p!1ue2 lH cuD~2p!1&

2E dl^D̄~2p!1ue2 lH cuD̄~2p!1&

2E dl^D~2p!2ue2 lH cuD~2p!2&

2E dl^D̄~2p!2ue2 lH cuD̄~2p!2&.

~18!

This time, the amplitude can be written in four ways,
terms of a D(2p)1, D̄(2p)1, D(2p)2, or D̄(2p)2. Based
on the previous tachyon charge argument, we can rule ou
last two possibilities, so we know the resulting object is
ther a stable D(2p)1 or a stable D̄(2p)1 in type 0A. This
agrees with Sen’s observation in@3# that there is an inheren
ambiguity as to whether the resulting object is a brane or
anti-brane.
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V. TACHYONIC KINK

The other component to the descent relations is the tac
onic kink. As shown in Fig. 1, kinking one of the two tachy
ons on a DpD̄p in a type II theory yields a D(p-1)ˆ in the
same theory and kinking the remaining tachyon results i
D(p-2). This part of the descent relations is shown by tak
a series of marginal deformations that connect the DpDp̄ to
the tachyonic kink and following what happens to the co
formal field theory~CFT! under these deformations.

To outline the series of marginal deformations, we w
use the D1D̄1 pair in 0B for simplicity. The details of this
analysis can be found in@3,4#. We begin with the D1D̄1 pair
wrapped on a circle of radiusR and make the following
deformations.

~1! We increase the gauge field on the D1̄ so that the open
strings with CP factorss1 ands2 are antiperiodic around the
compactification circle. In particular, the tachyon field wi
CP factors1 is moded by half-integers as

T~x,t !5 (
nPZ

Tn11/2~ t !ei [n1(1/2)](x/R). ~19!

~2! The radius of the circle is taken down toR51/A2. At
this value, theT61/2 modes are massless and, therefore, c
respond to marginal deformations.

~3! A vev of 2 i is given to (T1/22T21/2) which corre-
sponds to

T~x!5sin
x

2R
. ~20!

This is the tachyonic kink.
~4! The radius,R, is taken back to infinity.
Step number three will be our main focus. In order

understand the effect of this step, we first bosonize
worldsheet spinorscL and cR ~often denoted asc and c̃)
whose spacetime indices correspond to the compactified
rection. In addition tocL , cR , and the corresponding
X (5XL1XR), we introduce four new spinors
jL , jR , hL , and hR , and two new bosons,f (5fL

1fR) andf8 (5fL81fR8 ). The bosonization equations re
lating them are

e6 iA2XL;~jL6 ihL!, ~21!

e6 iA2fL;~jL6 icL!, ~22!

e6 iA2fL8;~hL6 icL!, ~23!

and similarly for the right-moving fields. We also have th
relations

jLhL;]XL , jLcL;]fL , hLcL;]fL8 , ~24!

as well as the corresponding right-moving relations. Reme
ber, these fields are specifically those fields whose space
5-5
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indices correspond to the compactified direction. Written
terms of the new bosonic field, the tachyonic kink is made
inserting

expS i
s1

2A2
R ]f D ~25!

at the boundary of the disk. In step~4!, the radius is taken
back to infinity by inserting vertex operators of the for
]X]̄X. When the contour integral of]f is contracted around
each of these operators, they are converted into2]f8]̄f8.
This corresponds to decreasing thef8 radius, so we mus
introduce aT-dual variable,f9 related to thef8 as

fL95fL8 , fR952fR8 , Rf951/Rf8 . ~26!

This converts the Neumann boundary condition onf8 to a
Dirichlet boundary condition onf9 and we are left with a
D0-brane wheref9 is the new spacetime coordinate in pla
of X.

This process is easily extended to DpDp̄ pairs forp other
than 1 since the other worldsheet fields are left unchang
This is, in fact, the key to understanding whether
Dp1D̄p1 gets kinked to a D(p-1)ˆ 1 or a D(p-1)ˆ 2. Let us
take a look now at what the1 and2 correspond to in terms
of worldsheet fields. The boundary stateuDp,h& satisfies the
following equations:

]nXmuDp,h&50, m50, . . . ,p

~Xi2yi !uDp,h&50, i 5p11, . . . ,9

~cm2hc̃m!uDp,h&50, m50, . . . ,p

~c i1hc̃ i !uDp,h&50, i 5p11, . . . ,9

~27!

~b2b̃!uDp,h&50,

~c2 c̃!uDp,h&50,

~g2hg̃!uDp,h&50,

~b2hb̃!uDp,h&50.

The first four of these equations are the familiar bound
conditions on the matter fields. The last four can be obtai
by demanding Becchi-Rouet-Stora-Tyutin~BRST! invari-
ance of the boundary state@8#.

The only worldsheet fields that are affected by the k
are those whose spacetime index is the same as the com
tified direction. For example, no matter what tachyonic kin
ing procedure we can imagine,c0 will certainly be unaf-
fected. Since theh value of theuDp,h& D-brane can be read
off from the boundary condition onc0, h is invariant under
all marginal deformations corresponding to tachyonic kin
This means that a Dp1D̄p1 gets kinked to a D(p-1)ˆ 1.
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Now we claim that the rest of the kink analysis go
through the same as it did in the case of the type II theor
How can we be so sure of this? The type-0 and type-II th
ries differ in their perturbative closed string spectra, but
marginal deformations needed to bring about a tachyo
kink uses only those parts of the closed string spectra
type 0 and type II have in common. In particular, the on
closed string VEV that is deformed is that of the gravit
which can be found in the (NS1,NS1) sector of all type-0
and type-II theories. All other deformations have to do w
open strings, and the bosonic open string spectra
D-branes in type-0 and type-II theories are identical. T
can be seen by comparing Tables I and II with Tables IV a
V in Appendix A.

Let us check that the Dp1D̄p1 gets kinked to the
D(p-1)ˆ 1 by considering the amplitude for the emission of
closed string tachyon. From Table III and Eq.~11!, we see
that the combined D11D̄11 pair in type 0B has a nonzer
tachyon charge.~Recall thath5qq̄.! The amplitude under
consideration is the closed tachyon tadpole amplitude: a
with the tachyon vertex operator inserted in the bulk. Aga
kinematics force the momentum of the emitted tachyon to
perpendicular to the D11D̄11 pair. Therefore, there are n
potential contractions between the tachyon vertex opera
e2F2F̃e2 ik•X, and the tachyonic kink operator in Eq.~25!.
The sign of the amplitude is not changed by the margi
deformations, so the result is a D0ˆ brane that couples to th
closed tachyon with the same sign as the D11D̄11, namely
a D0̂1.

The result we have established here for the D11D̄11

pair in type 0B can easily be extended to all Dp1D̄p1 pairs
and Dp2D̄p2 pairs for p even in 0A and p odd in 0B. Th
tachyonic kink on an unstable Dpˆ1 or Dp̂2, for p.0, can
be analyzed by the following procedure@3#. Take the un-
stable D1̂1 in 0A as an example. If we T-dualize th
D11D̄11 pair in type 0B, we find that the D01D̄01 pair
in 0A is connected by marginal deformations to the D1ˆ1 in

TABLE IV. The other two cases obtained by the following o

eration under which the spectrum is invariant: D↔D̄.

Open spectrum on stable D-branes
~p odd in IIB, p even in IIA!

s50 s5p Spectrum

Dp Dp NS1, R2

Dp D̄p NS2, R1

TABLE V. Open strings on unstable D-branes.

Open spectrum on unstable D-branes
~all p in IIA and IIB!

s50 s5p Spectrum

Dp̂ Dp̂ NS1, NS2, R1, R2
5-6
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0A. By running the marginal deformations backwards,
see that the D01D̄01 corresponds to a kink-antikink pair o
the D1̂1. This allows us to identify the tachyonic kink o
the D1̂1 as a stable D01 in type 0A. The flowchart of
descent relations in the type-0 theories is given in Fig. 3

VI. zDp,h‹: hÄ¿1 VS hÄÀ1

It is important to stress that the value ofh in uDp,h& does
not just affect the R-R charges of the D-brane. It has
important effect on many string amplitudes. In fact, we w
be able to show below that Dp1 and Dp2 branes have the
same tadpole couplings to all (NS1,NS1) fields and oppo-
site tadpole couplings to all (NS2,NS2) fields.

Let us first try to see the opposite tachyon charges of
Dp1 and Dp2 at the level of a string calculation. Emissio
of a tachyon from a D-brane in a type-0 theory is given b
disk amplitude with the tachyon vertex operator in the b
and appropriate boundary conditions on the edge. Note f
Eq. ~27! that these boundary conditions depend onh. Equa-
tions ~27! are in terms of the fields defined on the upper-h
plane, so once we map our tachyon amplitude to the up
half plane, the followingh-dependent equations must ho
on the real axis:

c̃m5hcm, c̃ i52hc i , ~28!

g̃5hg, b̃5hb. ~29!

The doubling trick@9# extends the string calculation to th
entire complex plane by defining

c̃m~ z̄!5hcm~ z̄!, c̃ i~ z̄!52hc i~ z̄!, ~30!

g̃~ z̄!5hg~ z̄!, b̃~ z̄!5hb~ z̄! ~31!

on the lower half plane. In actual calculations,b andg are
rebosonized in terms of the free bosonsF andx as

b>e2F1x]x, g>eF2x. ~32!

The doubling trick identifications ong andb can be rewrit-
ten as

F̃~ z̄!5F~ z̄!1
ip

2
~12h!,

x̃~ z̄!5x~ z̄!. ~33!

FIG. 3. Descent relations for the type-0 theories. Horizon

arrows denote modding by (21)FL
s
. Vertical arrows denote the ta

chyonic kink. A similar diagram exists with1→2.
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After mapping to the upper half plane and then using
doubling trick, the amplitude has become

^e2F(z)2F( z̄)2 ip(12h)/2e2 ik•X&

5~21!(12h)/2^e2F(z)2F( z̄)e2 ik•X&. ~34!

Here we see the explicit dependence onh of the D-brane’s
tachyon charge.

A somewhat complicated, but instructive, example is
look at C to C̄ scattering as depicted in Fig. 4, whereC and
C̄ are massless bosons from the two different R-R secto

The D-brane in type-0 theories couples to (NS2,NS2)
closed strings and there are vertices in the low energy sp
time action that connect (NS2,NS2) strings to aC and aC̄
@5#. The string diagram that contributes to this process i
disk with VC and VC̄ operators. These massless R-R ver
operators are given by

Vi
Cm21~zi ,z̄i !5~P2G i (m)!

AB:V21/2 A~pi ,zi !:

3:Ṽ21/2B~pi ,z̃i !:, ~35!

Vi
C̄m21~zi ,z̄i !5~P1G i (m)!

AB:V21/2 A~pi ,zi !:

3:Ṽ21/2B~pi ,z̃i !:, ~36!

where we are using the notation of@10#. The objects in these
vertex operators are defined as

V21/2A~pi ,zi !5e2F(zi )/2SA~zi !e
ipi•XL(zi ), ~37!

P65~16g11!/2, ~38!

G (n)5
an

n!
Fm1 . . . mn

gm1 . . . gmn,

~39!

whereSA is the spin field,g115g0 . . . g9, andFn5dCn21.
Under the doubling trick, the spin fieldS̃A will be identi-

fied as

S̃A~ z̄!5MA
BSB~ z̄!, ~40!

for some matrixM. This matrix can be specified@10# by
considering the following OPE’s:

l

FIG. 4. C→C̄ scattering off a Dp-brane.
5-7
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cm~z!SA~w!;~z2w!21/2
1

A2
~gm!A

BSB~w!

1 . . . ~41!

c̃m~ z̄!S̃A~w̄!;~ z̄2w̄!21/2
1

A2
~gm!A

BS̃B~w̄!

1 . . . . ~42!

The doubling trick identification for c̃m is c̃m( z̄)
5hDm

ncn( z̄), where Dm
n5(da

b ,2d i
j ). In order for Eq.

~42! to be consistent with Eq.~41!, M must satisfy

~gm!A
B5Dm

n~M 21gnM !A
B . ~43!

This can be rewritten as (Mgm)5Dm
n(gnM ) which implies

that M is of the form

M55
ag0 . . . gp for p11 odd,h 51,

bg0 . . . gpg11 for p11 even,h 51,

cg0 . . . gpg11 for p11 odd,h 521,

dg0 . . . gp for p11 even,h 521.

~44!

To fix the phases, the OPE’s

SA~z!SB~w!;~z2w!25/4CAB
211 . . . ~45!

S̃A~ z̄!S̃B~w̄!;~ z̄2w̄!25/4CAB
211 . . . ~46!

are used to find thatM 215C21MTC. Since all thegm and
g11 anticommute withC, we find the phases up to an overa
sign:

M55
6 ig0 . . . gp for p11 odd,h 51

6g0 . . . gpg11 for p11 even,h 51

6g0 . . . gpg11 for p11 odd,h 521

6 ig0 . . . gp for p11 even,h 521.

~47!

From now on, we will writeM asMh to distinguish between
the two forms it takes for fixed p. Equation~47! gives the
relationships betweenM 1 andM 2 as

M 256 iM 1g11. ~48!

The amplitude forC→C̄ scattering off a Dp1 is @11#
10600
A~C,C̄!152
ik2Tp

2 F1

2
Tr~P2G1(m)M 1gm!

3Tr~P1G2(n)M 1gm!B~2t/211/2,22s!

2Tr~P2G1(m)C
21G2(n)

T C!

3B~2t/221/2,22s11!

2Tr~P2G1(m)M 1G2(n)M 1!

3B~2t/211/2,22s11!G . ~49!

Since the Euler beta function is defined as

B~a,b!5E
0

1

dy ya21~12y!b21, ~50!

we see that the poles in thet channel arem25(4n22)/a8
for n50,1, . . . .These poles correspond to the masses of
closed strings in the (NS2,NS2) sector.

To obtainA(C,C̄)2 , the amplitude forC→C̄ scattering
off a Dp2, from A(C,C̄)1 , we must replaceM 1 with M 2

ande2F( z̄)/2 with e2F( z̄)/22 ip/2. It is simple to check that the
amplitude is invariant under replacingM 1 with M 2 . In the
correlation function, there are two factors ofe2F( z̄)/2 coming
from the two R-R vertex operators. After replacing the
with e2F( z̄)/22 ip/2, each one contributes a factor ofi for a
total phase of21. In summary, we find that

A~C,C̄!152A~C,C̄!2 . ~51!

This shows that the Dp1 and Dp2 couple with opposite
signs to all (NS2,NS2) fields.

How can this phenomenon be understood in a direct m
ner? Consider the tadpole amplitude for emission of a clo
string from a D-brane. If the closed string is in one of t
NS-NS sectors, the amplitude is a disk with the closed str
vertex operator in the (21,21) picture. For a NS-NS string
the amplitude for emission from a Dp1 can be converted
into an amplitude for emission from a Dp2 by multiplying
by 21 for each factor ofe2F̃ and c̃m. In the (21,21)
picture, the NS-NS vertex operator has as manyc̃ ’s as does
the corresponding Fock state. Therefore, the Dp2 amplitude
differs from the Dp1 amplitude by a factor of (21)F̃, where
F̃ is the right-moving worldsheet fermion number of th
NS-NS closed string state. In other words, Dp1 and Dp2
have the same tadpole couplings to all (NS1,NS1) fields
and opposite tadpole couplings to all (NS2,NS2) fields.

It is clear how to generalize this to a general disk amp
tude on a D-brane. To convert a general disk amplitude fo
D1 into the same amplitude with a D2, we multiply by
21 for each e2F̃ and c̃m, and we replaceM 1 with
6 iM 1g11 for each spin field. Since a fermionic state cann
transform into a bosonic one, the number ofMh’s will be
even in any nonzero amplitude, so the sign ambiguity in t
replacement is insignificant.
5-8
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VII. SUMMARY

We set out to find the descent relations for the typ
theories. We found that we must start with either a D1D̄1

pair or a D2D̄2 pair and that the1 and 2 are invariant
under the orbifold and kink operations. This means we h
two copies of the usual descent relation chain for the typ
theories: one for D1 branes and one for D2 branes. We
then asked why we should care about the distinction betw
a D1 brane and a D2 brane. While it is fairly well known
that the stable D1 and D2 have the same coupling to half o
the massless R-R fields and equal and opposite coupling
the other half, we have shown that the D1 and D2 have the
same tadpole couplings to half of the NS-NS fields and eq
and opposite tadpole couplings to the other half.
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APPENDIX A: OPEN STRING SPECTRUM

In this appendix we will find the open string spectrum
type-II and type-0 D-branes. We begin by considering
closed string exchange amplitudes between boundary st
which are given in@12#. Motivated by the usual worldshee
10600
0

e
0

en

to

al

in
.

.

e
es,

duality of the cylinder diagram, this result can be conver
into an open string loop amplitude. The results are as
lows:

E dl NS-NŜ Bp,hue2 lH closeduBp,h&NS-NS

5E dt

2t
TrNS@e2tHopen#

E dl NS-NŜ Bp,hue2 lH closeduBp,2h&NS-NS

52E dt

2t
TrR@e2tHopen#

~A1!

E dl R-R̂ Bp,hue2 lH closeduBp,h&R-R

5E dt

2t
TrNS@~21!Fe2tHopen#

E dl R-R̂ Bp,hue2 lH closeduBp,2h&R-R

52E dt

2t
TrR@~21!Fe2tHopen#.

We will combine Eqs.~A1! with the expressions@2# for
the type-II D-branes in terms of boundary states,
uDp&5~ uBp,1&NS-NS2uBp,2&NS-NS!

1~ uBp,1&R-R1uBp,2&R-R!

uD̄p&5~ uBp,1&NS-NS2uBp,2&NS-NS!

2~ uBp,1&R-R1uBp,2&R-R!
6 for p even~odd! in IIA ~ IIB ! ~A2!

uDp̂&5uBp,1&NS-NS2uBp,2&NS-NS}for all p in IIA and IIB ~A3!

and the expressions for the type-0 D-branes in terms of boundary states,

uDp,1&5uBp,1&NS-NS1uBp,1&R-R

uDp,2&5uBp,2&NS-NS1uBp,2&R-R

uD̄p,1&5uBp,1&NS-NS2uBp,1&R-R

uD̄p,2&5uBp,2&NS-NS2uBp,2&R-R

6 for p even~odd! in 0A ~0B! ~A4!

uDp̂,1&5uBp,1&NS-NS

uDp̂,2&5uBp,2&NS-NS
J for all p in 0A and 0B. ~A5!

It is impossible for a R-R string to spontaneously convert into a NS-NS string, or vice versa, so we know that

NS-NŜ Bp,h8ue2 lH closeduBp,h&R-R50. ~A6!

Now, to find the spectrum on open strings beginning and ending on a stable Dp1 in the type-0 theories, we will rewrite the
closed string exchange diagram as a trace over open
5-9
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string states. We have everything we need to perform
calculation; combining Eqs.~A1! and ~A4!, we find

E dl^Dp,1ue2 lH closeduDp,1&

5E dl NS-NŜ Bp,1ue2 lH closeduBp,1&NS-NS

1E dl R-R̂ Bp,1ue2 lH closeduBp,1&R-R

5E dt

2t
TrNS@e2tHopen#

1E dt

2t
TrNS@~21!Fe2tHopen#

5E dt

2t
TrNS@~11~21!F!e2tHopen#

5E dt

t
TrNS1@e2tHopen#. ~A7!

So we see that the open strings beginning and ending
stable Dp1 in the type-0 theories are NS1. Proceeding in
this manner, we can find the spectrum of open strings on
possible combinations of D-branes in the type-0 and typ
theories. The full results for the type-0 theories are given
Tables I and II in Sec. II. The results for the type-II theori
are given in Tables IV and V.

APPENDIX B: ORBIFOLD OF 0A Õ0B

The action of (21)FL
s

can be represented as a 2p space-
time rotation on the left movers. Under this rotation, t
left-sector bosons~NS! are invariant and the left-sector fe
mions ~R! pick up a minus sign. We can pick any spat
plane for this rotation and for our purposes here we select
8-9 plane.

The situation is greatly simplified if we use complexifie
coordinates@1# for those left-moving fields whose indices a
in the 8-9 plane,

C45
1

A2
~c81 ic9!,

C 4̄5
1

A2
~c82 ic9!, ~B1!

]Z45
1

A2
~]X81 i ]X9!,

]Z4̄5
1

A2
~]X82 i ]X9!. ~B2!

With this notation, a rotation on the left-movers by angleu in
the 8-9 plane has the following action on the fields:
10600
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C4→eiuC4,

C 4̄→e2 iuC 4̄, ~B3!

]Z4→eiu]Z4,

]Z4̄→e2 iu]Z4̄. ~B4!

We wish to find the orbifold of type 0A by (21)FL
s
. This

is an asymmetric, Abelian orbifold with group elemen

$1,(21)FL
s
%. The untwisted sector, corresponding to the ide

tity element, is simply the projection of 0A on states inva

ant under (21)FL
s
. It is clear that the invariant states a

those in the sectors (NS1,NS1) and (NS2,NS2). Let us

check that we get the same result by representing (21)FL
s

as
a rotation by 2p on the left-movers. On the NS secto
ground state vertex operator, 1→1; the NS sector is invari-
ant. To consider the action on the R sector ground state
tex operator, we must bosonize the complexified fermions

C45eiH 4
,

C 4̄5e2 iH 4
, ~B5!

and likewise for the other fermions. In terms of these boso
H fields, the spin operator takes the form

Qs5ei(
a51

4

saHa
, ~B6!

where the sa561/2. Since C4 transforms under theu

52p rotation as~B3!, exp(12iH
4) transforms as

e(1/2)iH 4→eipe(1/2)iH 4
52e(1/2)iH 4

. ~B7!

Therefore, the spin field, and subsequently the left-movin
sector vertex operator, picks up a minus sign from thep
rotation; the (R1,R2) and (R2,R1) sectors are projected
out.

In the twisted sector, the boundary conditions on the]Z4

andC4 fields are as follows:

]Z4~s12p!5e2p i]Z4~s!,

]Z4̄~s12p!5e22p i]Z4̄~s!, ~B8!

C4~s12p!5e2p i (b1n)C4~s!,

C 4̄~s12p!5e22p i (b1n)C 4̄~s!, ~B9!

wheren50 for R, n51/2 for NS, andb51. At first glance,
it appears as though the boundary conditions are unchan
However, if we continuously change the boundary condit
factor exp(2pib) from b50 to b51, we see that the moding
of the Fourier coefficients has changed fromn for both ]Z4

and]Z4̄ andn1n for both C4 andC 4̄ to
5-10
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a4: n11,

a 4̄: n21,
~B10!

C4: n111n,

C 4̄: n212n.

This phenomenon, known as spectral flow, has an impor
consequence for the ground state of the theory. When
began withb50, the ground state was defined as

Cn1n
4 u0&5Cn112n

4̄ u0&50 for n50,1, . . . , ~B11!

with similar equations for the otherC. The effect of continu-
ously changingb from 0 to 1 is that we replacen with n
11 in these equations. The ground state now satisfies
conditions

Cn1n11
4 u0&5Cn2n

4̄ u0&50 for n50,1, . . . . ~B12!

The u0& state is no longer the ground state becauseCn
4u0&

Þ0 andC2n
4̄ u0&50. The true ground state is

u0&85Cn
4u0& ~B13!

since

Cn
4u0&85Cn

4Cn
4u0&50 ~B14!

and
,

y,’
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C2n
4̄ u0&85C2n

4̄ Cn
4u0&5$C2n

4̄ ,Cn
4%u0&5u0&Þ0.

~B15!

However, now the GSO condition on the left-movers,

~21!Fu0&56u0& ~B16!

has become

~21!Fu0&852Cn
4~21!Fu0&57u0&8. ~B17!

We see that the GSO conditions on the left-movers has b
reversed.

This leaves us with the following twisted sector:

~NS2,NS1! ~NS1,NS2! ~R2,R2! ~R1,R1!.
~B18!

Of these four groups of states, we keep only those that
combine with the untwisted sector to give us a modular
variant theory. For Abelian orbifolds, the correct criteria f
the twisted states to ensure modular invariance is le
matching. In the (NS2,NS1) and (NS1,NS2) sectors,
there is no way to obtainL05L̃0, so we drop these states.

In the end, we are left with the (NS1,NS1) and
(NS2,NS2) states from the untwisted sector and t
(R2,R2) and (R1,R1) states from the twisted secto
Combined, these give the spectrum of the type-0B theory
given in Eq.~2b!. The argument works in the same way
get type 0A from 0B.
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