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The type-0 theories have twice as many stable D-branes as the type Il theories. In light of this added
complication, we find the descent relations for D-branes in the type-OA and OB theories. In addition, we work
out how the two types of D-branes differ in their couplings to NS{N®&veu-Schwarzfields.
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INTRODUCTION Level matching The first condition we use to rule out

some theories is the level matching conditiog=L,. The
In this paper, we gain further insight into type-0 D-branesNS— sector has half-integer levels while the NS R+,

by working out the descent relations for type-O theoriesand R- have integer levels. Therefore, NScannot be
Sen’s descent relations in the type-Il theories relate differenpaired with any of the other three sectors.
D-branes through operations of orbifolding and tachyon mutual locality. All pairs of vertex operators must be mu-
kinking. These relations form an interlocking chain of rela-tually local. That is, the phase obtained by taking one vertex
tionships between the different types of D-branes. Althougtpperator in a circle around the other must be unity or else
the type-0 theories are in many ways similar to the type-llthere is phase ambiguity in the amplitude.
theories, it is not immediately clear how one should draw the  Closed OPE The operator product expansi¢®PE) of
descent relation diagram since type-0 theories have twice th@e vertex operators in the theory must be in terms of vertex
number of D-branes. This problem is addressed in Secs. llhperators that are also present in the theory.

through V. o _ Modular invariance Modular invariance requires that
Sections | and Il serve as very brief introductions to thethere be at least one left moving R sector and at least one
type-0 theories and their D-brane content. In Sec. Ill, Weright moving R sector.

review the descent relations in type-II theories and we man- The only four theories that satisfy these simple consis-
age to rule out certain combinations of type-0 D-branes fromency requirements are the type-IIA theory,
having any starring role in the type-O descent relations. In
Secs. IV and V, we uncover how the type-O D-branes are (NS+,NS+) (R+,R—) (NS+,R-) (R+,NS+) (1a
related via orbifolds and kinks, respectively. By the end of
Sec. V, we have pieced together the type-0 descent relationée type-IIB theory,

Section VI demonstrates the fundamental distinction be-
tween the two types of D-branes in type-0 theories. We show (NS+,NS+)  (R+,R+)  (NS+,R+) (R+'NS+)1b
in Sec. VI that the two types of D-branes+Dbranes and (1b)
D— branes, have opposite charges with respect to allhe type-0A theory,
(NS—,NS—) Neveu-Schwarz fields. We will also show how
a general disk amplitude with a-b relates to the same am- (NS+,NS+) (NS-NS-) (R+,R—) (R—,R+)
plitude with a D-. (2a)

l. PERTURBATIVE SPECTRUM and the type-0B theory,

Type-Il superstring theories are composed of left- and (NS+,NS+) (NS—NS—-) (R+,R+) (R—,R-).

right-moving pieces which reside in one of four sectors, (2b)

NS+ and Ramond (R=*). The + and— here denote the . . .
value of the worldsheet fermion number operator,10F The perturbative spectra of the type-0 theories contain no
s Vo spacetime fermions. In the NS-NS sectors, the low-lying
not to be confused with the-(1)". operator to be intro-  states are the tachyon from (NSNS—) and the graviton,
duced later. At first blush, it appears as though there are ogntisymmetric tensor, and dilaton from (NSNS+). The
the order of 2° possible string theories, each factor of 2 type 0 theories have twice as many massless R-R states as
coming from whether or not a given theory contains a parthe type-ll theories. In particular, type OA has two R-R
ticular combination of sectors. Several consistency condi1-forms and two R-R 3-forms; type OB has two R-R scalars,

tions pare this enormous number of possibilities to only fouryywg R-R 2-forms, and one R-R 4-form with an unconstrained
Two of these are the type-lIA and -IIB theories. The others_form field strength.

two are the less familiar type-OA and -0B theories. The con-
sistency conditions are as followor a review, segl)). Il D-BRANES
The fact that the type-0 theories have twice as many R-R
*Email address: mattoon@physics.harvard.edu fields as the type-Il theories is an indication that there may
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be twice as many stable D-branes in type 0 as compared to IBp,—)rr. ®)
type Il. This turns out to be correct and can be understood
quite directly by examining D-branes in the boundary state

formalism(for a review, se¢2]). In this formalism, D—branes The + and— denote the boundary conditions on the world-
are represented by boundary states for the physical closeg,eet fermions and superghosts as in E2@. Linear com-
strings. These boundary states are themselves cohergfihations of these states must be taken to form D-brane

closed sring states. . boundary states which, in turn, must be GSO-invariant and
In both the type-Il and type-0 theories, there are fourmust satisfy certain consistency conditidas

types of boundary states for each p, The D-brane boundary states in the type-0 theories are as
|Bp,+)nsns: [BP,—)Insins:  [BP )RR follows:
|

IDp,+)=[Bp,+)nsnst [BP. +)rr
IDp,—)=[Bp,— )nsnst|BP, —)rr

— for p even (odd in OA (OB) (4)
[Dp,+)=[Bp,+)nsns—|BP, +)rR

IDp,—)=[Bp,—)nsns—|BP, —)rr

Dp,+)=|Bp,+)ns.

IDP.+)=[BP. +)nsns for p odd (even in OA (OB). (5)

|651_>:|Bp!_>NS-NS

Using » to denote+1, the |Dp,#) states correspond to extrapolated to all possibilities by noting that a given spec-
stable D-branes. We see from the minus sign in front of therum is invariant under the replacements—ID and/or
R-R boundary states that th5p,n> states correspond to +« —. For example, from the first line of Table I, we see
stable anti-D-branes. Thp,7) states correspond to un- that the open strings beginning on a Bpand ending on a
stable D-branes. Dp+ are NSt. Therefore, the strings beginning on_zpD

Let us pause for a second to make a remark on D-brang,q ending on a_m are NSt . Similarly, strings beginning

stability. The condition for stability is that the spectrum of n a Dp- and ending on a Dp (o beginning on a P—
open strings on the D-brane does not contain a tachyon. It i2 P~ =nding 9 9

important not to confuse this condition with being a @nd ending on a p-) are also NS-.
Bogomol'nyi-Prasad-SommerfielBPS object. Of course, We see that there are two tachyons among the open
none of the D-branes can be BPS in the type-0 theories sincrings stretched between |®p,») and a|Dp,7). One
there is no supersymmetry to begin with; there are no fermitachyon startsat c=0) on the |Dp,») and ends(at o

ons in the absence of D-branes. It just so happened fot ) on the|Dp,7), and the other tachyon starts on the

D-branes in the type-Il theories that the conditions of stabil5; and ends on th This indicates an instabilit
ity and BPS coincided. | p.7) ar . P, 7). y
in the DD pair.

It will be important for our purposes to find the spectra of . .
open strings living on or between D-branes. The details can _We see in Table ”’,ES expected, that there is a tachyon
be found in Appendix A and the results for type-0 D-branes!Ving on the unstabl¢Dp, 7) D-branes.

are given in Tables | and Il. The spectra in Table | can be
I1l. DESCENT RELATIONS

TABLE I. All other cases obtained by one or both of the

following operations under which the spectrum is invariant: Sen's descent relations give relations between different

D-brane configurations in the type-Il theoriéisr a review,

+ <« —, D<D.
TABLE Il. All other cases obtained by < — under which the
Open spectrum on stable D-branes spectrum is invariant.
(p odd in 0B, p even in OA
o=0 o= Spectrum Open spectrum on unstable D-branes
(all p in OA and 0B

Dp+ Dp+ NS+ _ _

_ o=0 o= Spectrum
Dp+ Dp+ NS—
Dp+ Dp— R+ Dp+ Dp+ NS+, NS—
Dp+ Dp— R—- Dp+ Dp- R+, R—
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1 4 1 2 . _
IIB D(2p+1)D(2p+1) — 1A D(2p+1) — IIB D(2p+1) 1-1: X=z+...
i} 1 2-2 : X=y+...

o

Di a
A D(Zf)D(Qp) - 1B ]f(Zp) — IIA D(2p) 1-2 : X=go ;(yo —ao)+ ...
- IIA D(2p—1) —  IIB D(2p-1 o
ip ) (2p-1) To %o 2—-1 : X=y0+;(il70—y0)+---
- TIA D(2p—2)

. . . FIG. 2. Position zero modes corresponding to open strings in a 2
FIG. 1. Descent relations for the type-Il theories. Horizontal p_pane system.

arrows denote modding by—(l)Ff. Vertical arrows denote the ta-

chyonic kink. so we were able to orbifold the_DDairs. Since

see[3]). The two important operations are orbifolding b s
[,:]s) s . P > . 9> (=DFLBp = )nsns=BP = )nsws:

(—1)"., whereF; is the spacetime fermion number of the

left-movers, and kinking the tachyon field that lives on un- _\FS N +

stable configurations of D-branes. Starting with a coincident (=D7HBP, £ )rr= ~[BP, = )rr, ©

D(2p)D(2p) pair in type A, orbifolding by (—1)Ff yields  we see from Eq(4) that in the type-0 theories

an unstable D(2p)n type IIB. Orbifolding one more time

leaves us with a stable(p) in the type-IIA theory. Starting (—1)Ft[Dp+)=[Dp+),
again with the D(®)D(2p) pair in type llA, but this time £s —
kinking the tachyon field that lives on the D-branes, we are (=1)"t[Dp—)=[Dp—-), ()

left with an unstable D(2p-1)n type llA. Kinking the re-  gpqg
maining tachyon field gives us a stable D{2p) in type

lIA. The results are similar if we start with a Dp2 (—1)FL|Dp+)=|Dp+),
+1)D(2p+1) pair in type IIB. In fact, the descent relations
form an interlocking chain as shown in Fig. 1. (—1)Fi|5p—)=|Dp—>. (8)

The natural question at this point is what the analogue of
the descent relations is for the type-0 theories. Starting witlThis means that the coincident EB|5p— pair is not invari-

a D(ZD)E(ZP) in type OA, we have four possibilities to con- ant under ¢ 1)t and we no longer consider it as a potential
sider: a choice oft- or — for each of the two branes. Then, participant in the type-0 descent relations. Fortunately, the
once we orbifold(kink), we must figure out whether we get Dp-+Dp+ and Dp-Dp— pairsare invariant under ¢ 1)Ff
D(2p)+ or D(2p)—~[D(2p-1)+ or D(2p-1)—]. For a dis- g4 e will be able to interpret the orbifold as a projection of
EUSSIS/T of the differences betweenrDand D- branes, see  he open string states.
ec. VI.

In the type-Il descent relations, every time we orbifold or

kink we effectively remove one of the tachyonic degrees of

freedom. A complex tachyon lives on the Dfir; orbifold- Here we will consider what happens to the coincident
ing or kinkin_g once givgs an unstable D.—bran(_a with a reaID(Zp)Jr D(2p)+ pair in type OA under the< 1)Fi orbifold.
tachyon; orbifolding or kinking one more time gives a stablegist, et us look at the spacetime bulk far from the D-branes.
D-brane with no tachyon field. With this observation, we can| gcally, this is just type OA without any open strings. Taking

quickly rule out two of the choices for theTDDair in the  ihe orbifold of type OA by &1)Ff gives the type-0B theory,
type-0 case. Since the open string tachyon arises from thg,q vice versdsee Appendix B for details

NS— sect_or, we see from Table | that only the Bpp+ As we have already noted in Eqf) and (8), (_1)|:ﬁ

and Dp-Dp— pairs for p odd in OB(even in 04 have  guiiches the D(2py and D(2p)+, so its action on the
tachyon fields living on them. Chan-Paton factors is

Holding out some hope for the BpDp— pair, let us see
if there is any room in the type-0 descent relations for this A—>01Aal’1. 9
object. Clearly, we cannot consider a tachyon kink since
there is no tachyonic kink on this pair of D-branes: from Of the four Chan-Paton factors, oy, o, andos, only |
Table I, we see that there are MSstrings living on each of and oy are invariant under this operation. Therefore, the
the D-branes and R strings stretched between the two. Per-open strings with CP factotsando; are kept and those with

: ; ; ) ES _ CP factorso, and o3 are thrown out.
haps we can orbifold this paFlsr of D brar.1es by )"t How We can see that this new object, the result of orbifolding
ever, one can take the—(1)"t orbifold in the presence of

. : . . i o - _.D(2p)+ 5(2p)+, is a single brane since the degrees of free-
D-branes Oths/ if that conﬁguraﬂo_n of D-branes is mva_”antdom corresponding to the relative positions of the original
under (-1)7. For example, in the type-ll theories, p-pranes have been projected out. The position coordinates
(—-1)F|D(2p))=|D(2p)) and (—1)FL|D(2p))=|D(2p)),  corresponding to their respective CP factors are as in Fig. 2.

IV. (—1)FL ORBIFOLD
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TABLE lll. R-R charges for stable D-branes. (T.k|Dp,+)=(T.k|(|Bp,+ )nsnst |BP: +)rR)

Stable Dp R-R charges =(T,k|Bp, + )ns-ns
(p odd in 0B, p even in OA

=(e" " e M XBp,+)nsns

q q T
Dp+ 1 1 :—p<e_¢_‘~1’e_ik'x|Bx)|B h>
Dp+ -1 -1 2 ’
Dp- L -1 X[By, 7)ns-NdBsgh: 7)Ns-Ns: (12
Dp— -1 1

wherek is perpendicular to the D-brane. Now consider an

N ) unstable D(p-1} that is extended in p1 of the same di-
Writing out the lowest order degrees of freedom in termsyections as the Dp. The amplitude for an unstable

of Chan-Paton factors, we find that we can regroup them aBT;)Tl)Jr to emit a tachyon in the same direction is

10 00 d 01 (TKD(p—T),+)=(TkB(p—1),+)ns.
XO(O 0 +VYo 01 + x0+;(y0—xo) (0 0) - ] NS-NS
_ Pl o-D—ik-X '
=——(e e |Bx)
+ YO+_(XO_YO)K
7 1o X|Bgn|By, 7)ns-nd Bsghs 7)Ns-Ns-

1 1 1 (13)
=5 (X0t Yol + 5 (X=Yo) o3+ 5 (Xo+Yo) o1
The only difference between Eg&l2) and (13) is the nor-
malization and the matter part of the boundary state. Bgth
and T,_, are positive constants. The difference between
|Bx)" and|By) is a minus sign on one of th¥ fields which
does not get contracted with tle& X of the tachyon sinc&
is perpendicular to the Dp. The difference betweekay
and|B,) is a minus sign on one of the fields, but none of
the ¢ fields in the boundary state get contracted with any-
thing in the tachyon vertex operator. Therefore, the tachyon

NS— strings(corresponding ter;) living on it. This identi- ke i
charge of the unstable D(p-%) is related to the charge of

fies the object as either D(2p) or D(2p)—. In order to
distinguish between these two options, we look at the cou’Ehe stable Dp- by a factor ofTp_,/T,, so the tachyon

pling of this (2p)-brane to the (NS,NS—) tachyon and t@dpole terminan unstabl® (p—1I),7) brane’s low energy

compare it to the coupling of the D(2p) and D(2p)- to effective action is

the (NS-,NS—) tachyon. But first we must determine what T, 17

these couplings are. - LJ dPigT(X). (14)
We know from[5] thatstableD-branes in the type-0 theo- 4

ries have the term

] 2ic
—i(Xo—Yo)+ 7(Xo—)’o)

1
2

The (Xo—Yq) degree of freedom multiplies onlky, and o3,
which are projected out.

After orbifolding, we are left with a(2p)-brane in the
type-0B theory with NS- strings (corresponding to)land

Note, by comparing Eq$11) and(14), that the Dp- and the
T aq D(p-1)+ couple with the same sign to the closed string
p + tachyon.
N Tf P**oT(X) (D Si);ce both the closed string tachyon and the NS-NS
boundary state part of the D-branes both reside in the
in their low energy effective action, whegis the closed (NS.NS sector which is unaffected by the orbifold, the cou-
string tachyon, andj andq are the D-brane’s charges under PiNG Of the brane to the tachyon should be unchanged. This
the massless R-R fields andC. The R-R charges of stable meanslh\at the D(2p)D(2p)+ in type OA gets orbifolded
D-branes in the type-0 theories are given in Table III. Noticeto the D(2p)+ of type 0B. _
thatqq= 7. We can understand the orbifold at the level of boundary
We know from cylinder diagrams between D-branes thalStates by considering the emission and reabsorption of closed

the unstableDT and D-have opposite tachyon chargg], ~ Stngs by the D(2py D(2p)+ pair. To simplify our equa-
but this cannot tell us how to assign the charges to the tw

(t)ions, we introduce the shorthand notation
types of D-branes. The solution to this can be found by com- ID(2p)+)
paring tachyon tadpole calculations for the stable and un- ((A))Ef dil P
stable D-branes. |ID(2p)+)
The amplitudd 7,8] for a stable Dg- to emit a tachyon is

+

Cc

ID(2p)+)
ID(2p)+)
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In this formalism, the calculation of the cylinder diagram for V. TACHYONIC KINK
an open string with CP factoA can be rewritten as the
closed string exchange amplitu@e\ )). The amplitude for a
closed string to be emitted and reabsorbed by the

D(2p) +D(2p)+ pair is equal to

i

The other component to the descent relations is the tachy-
onic kink. As shown in Fig. 1, kinking one of the two tachy-

ons on a Dplb in a type Il theory yields a D(p-1in the

same theory and kinking the remaining tachyon results in a

1 1 D(p-2). This part of the descent relations is shown_by taking
>>> ((I+o1))

(16) a series of marginal deformations that connect the pp®d
the tachyonic kink and following what happens to the con-

When we orbifold by projecting out, and o3, we see that formal f'el.d theory(CFT) under thgse deformat!ons. .
this amplitude is unchanged. However, we know from our To outline the series of marginal deformations, we will
earlier discussion that the resulting object is a singleise the D1D pair in 0B for simplicity. The details of this
D-brane. Therefore, we should be able to rewrite @§) as  analysis can be found ir8,4]. We begin with the D1D pair
the emission and absorption of a closed string by a singlrapped on a circle of radiuR and make the following
D(2p). Attempting this, we find deformations. -
(1) We increase the gauge field on thé& Bo that the open
— MY ST strings with CP factors, ando, are antiperiodic around the
4J di(D(2p)+|e""[D(2p) +), compactification circle. In particular, the tachyon field with
CP factoro; is moded by half-integers as

11

((1+a1))= - -
4f di({D(2p)—|e "M<|D(2p) —).
(17) T(X,0)= 2, Thipplt)elnt(RIXR), (19

neZ

This amplitude can be written in terms of either a D(2pdr
a D(2p)—, but our previous tachyon charge argument singles
( P P y gearg g this value, theT . 1, modes are massless and, therefore, cor-

out the D(2p)t-. . respond to marginal deformations.

If we orbifold one more time by € 1)L, the bulk trans- (3) A vev of —i is given to (Ty,—T_1,) Which corre-
forms back to type OA. The action of the orbifold on the sponds to
D-brane’s open string modes can be determined by examin-
ing the two-point functions of the theory. The existence of X
nonzero two-point functions between open strings on the T(x)=sin;z. (20
D-brane and closed strings in the bulk allows us to determine

the action of 61)Ff on the open strings by requiring the This is the tachyonic kink.

correlation functions to be invariant. As in the type-Il case (4) The radiusR, is taken back to infinity.

[3], the orbifold’s effect on the D(2p) is to project out the Step number three will be our main focus. In order to
open strings with CP factar;. Removing theo; from Eq.  understand the effect of this step, we first bosonize the
(16) leaves the following amplitude for closed string emis- worldsheet spinorsy, and & (often denoted ags and )

(2) The radius of the circle is taken down Ro=1/,/2. At

sion and absorption: whose spacetime indices correspond to the compactified di-
p rection. In addition toy, , g, and the corresponding
4 e He " X (=X +Xg), we introduce four new spinors
2f diD(2p)+le TD(2p)+) &L, €ry 7L, and 77g, and two new bosonsg (= ¢,

_ - +¢r) and¢’ (= ¢+ ¢g). The bosonization equations re-
Zf di(D(2p)+|e”""|D(2p)+) lating them are
(=1 (19 i ox |
2f di(D(2p)—|e "Me|D(2p)—) e L~ (&L xin), (21
— — 2 g +i
Zf dI(D(2p)—|e_'HC|D(2p)—). € (§|_—|l/f|_), (22)
=2 (g xiyy), (23

This time, the amplitude can be written in four ways, in

terms of a D(2py-, D(2p)+, D(2p)—, or D(2p)—.Based and similarly for the right-moving fields. We also have the
on the previous tachyon charge argument, we can rule out thelations

last two possibilities, so we know the resulting object is ei-

ther a stable D(2p} or a stable P2p)+ in type OA. This Em~oXy, ELL~0ddL, mLL~dd|, (24
agrees with Sen’s observation|ig] that there is an inherent

ambiguity as to whether the resulting object is a brane or aas well as the corresponding right-moving relations. Remem-
anti-brane. ber, these fields are specifically those fields whose spacetime
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indices correspond to the compactified direction. Written in  TABLE IV. The other two cases obtained by the following op-
terms of the new bosonic field, the tachyonic kink is made byeration under which the spectrum is invariant-D.
inserting

Open spectrum on stable D-branes

. oq (p odd in 1B, p even in lIA
ex '2\/5 d¢ (25 =0 o= Spectrum
. . Dp Dp NS+, R—
at the boundary of the disk. In stég), the radius is taken Dp Bp NS— R+

bac_k to infinity by inserting vertex operators of the form
dXaX. When the contour integral @f¢ is contracted around

each of these operators, they are converted mm{;’;d)’ Now we claim that the rest of the kink analysis goes
This Corresponds to decreasing tbé radius, so we must through the same as it did in the case of the type Il theories.
introduce aT-dual variable,¢” related to thep’ as How can we be so sure of this? The type-0 and type-II theo-
ries differ in their perturbative closed string spectra, but the
dl=¢l, ¢Pr=—¢r, Ryp=1R, . (26) marginal deformations needed to bring about a tachyonic

kink uses only those parts of the closed string spectra that
This converts the Neumann boundary conditiongnto a  type 0 and type Il have in common. In particular, the only
Dirichlet boundary condition op” and we are left with a closed string VEV that is deformed is that of the graviton
DO-brane wherep” is the new spacetime coordinate in place which can be found in the (NS,NS+) sector of all type-0
of X. and type-Il theories. All other deformations have to do with

This process is easily extended to Dppairs forp other ~ Open strings, and the bosonic open string spectra on

than 1 since the other worldsheet fields are left unchanged?-branes in type-0 and type-Il theories are identical. This
This is, in fact, the key to understanding whether acan be seen by comparing Tables | and Il with Tables IV and

Dp-+Dp+ gets kinked to a D(p-1) or a D(p-1)-. Letus Y N Appendix A. _

take a look now at what theé and— correspond to in terms ~_Let us check that the DpDp+ gets kinked to the

of worldsheet fields. The boundary stép, ) satisfies the D(p-1)+ by considering the amplitude for the emission of a

following equations: closed string tachyon. From Table Il and EG4l), we see
that the combined D D1+ pair in type OB has a nonzero
tachyon charge(Recall thatn=qq.) The amplitude under

9 consideration is the closed tachyon tadpole amplitude: a disk

’ with the tachyon vertex operator inserted in the bulk. Again,
kinematics force the momentum of the emitted tachyon to be
perpendicular to the D&D1+ pair. Therefore, there are no
potential contractions between the tachyon vertex operator,

IX#Dp,7)=0, w=0,...p
(X'—=yH|Dp,7)=0, i=p+1,...

(y“—5¢")|Dp,n)=0, wu=0,...p

i+ pdf = i=p+1,... b i _—r :
(¥ +74)IDp,m=0, i=p+1,....9 e ?~®e kX and the tachyonic kink operator in E(5).
27 The sign of the amplitude is not changed by the marginal
(b—B)|Dp 7)=0 deformations, so the result is a M@ane that_couples to the
closed tachyon with the same sign as theHIl1 +, namely
(c=0)|Dp,7)=0, a Dot _
The result we have established here for tﬂe+|:|))]1+
(y— 7{«})|Dp, 7)=0, pair in type OB can easily be extended to all-bpp+ pairs
B and Dp-Dp— pairs for p even in OA and p odd in OB. The
(B—npB)|Dp,7)=0. tachyonic kink on an unstable Bpor Dp—, for p>0, can

] ) - be analyzed by the following proceduf8]. Take the un-
The first four of these equations are the familiar boundary,

o ! ) atable D in OA as an example. If we T-dualize the
conditions on the matter fields. The last four can be obtaine — o . = .
by demanding Becchi-Rouet-Stora-TyutiBRST) invari- D1+ D1+ pairin type 0B, we find that the DEDO+ pair
ance of the boundary staf8]. in OA is connected by marginal deformations to thedDin
The only worldsheet fields that are affected by the kink
are those whose spacetime index is the same as the compac-
tified direction. For example, no matter what tachyonic kink-
ing procedure we can imaging® will certainly be unaf-
fected. Since they value of thelDp, ) D-brane can be read
off from the boundary condition ot°, 7 is invariant under
all marginal deformations corresponding to tachyonic kinks. Bp Bp NS+, NS—, R+, R—

This means that a Dp5p+ gets kinked to a D(p-1) .

TABLE V. Open strings on unstable D-branes.

Open spectrum on unstable D-branes
(all p in 1A and 11B)
a=0 o= Spectrum
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{ 4
0B D(2p+1)+D(2p+1)+ — 0A D(2p+1)+ — 0B D(2p+1)+ [¢]
4 4
0A D(2p)+D(2p)+ 0B D(2p 0A D(2p)+
( p)l+ (2p)+ — ip)+ - (2p) (NS—.NS—)
-+ 0AD@p-1)+ — 0B D(2p—1)+ XN
1

— O0AD(2p—2)+

FIG. 3. Descent relations for the type-O theories. Horizontal Dp ¢
arrows denote modding by—(l)Fﬁ. Vertical arrows denote the ta-
chyonic kink. A similar diagram exists with- — —. FIG. 4.C—C scattering off a Dp-brane.

0A. By running_the marginal deformations baCkwardS, WeAfter mappn’]g to the upper half p|ane and then using the
see that the D® DO+ corresponds to a kink-antikink pair on doubling trick, the amplitude has become

the D1+. This allows us to identify the tachyonic kink on

the D1+ as a stable D& in type OA. The flowchart of
descent relations in the type-0 theories is given in Fig. 3.

<e—c1:(z)—q>(?)—iw(1— n)/ze—ik-x>

:(_l)(l—7,)/2<e—<b(z)—c1>(?)e—ik-x>_ (34)

VI [Dp.p): p=+1VSy=—1 Here we see the explicit dependence pof the D-brane’s

It is important to stress that the valuepin |Dp, ) does  tachyon charge. _ _ _ _
not just affect the R-R charges of the D-brane. It has an A somewhat complicated, but instructive, example is to
important effect on many string amplitudes. In fact, we will look atC to C scattering as depicted in Fig. 4, wheZeand

be able to show below that Bp and Dp- branes have the C are massless bosons from the two different R-R sectors.
same tadpole couplings to all (NSNS+) fields and oppo- The D-brane in type-0 theories couples to (NSS—)
site tadpole couplings to all (NS,NS—) fields. closed strings and there are vertices in the low energy space-

Let us first try 10 see the oppos_ite tachyon_ charge_s o_f th‘ﬁme action that connect (NS,NS—) strings to aC and aC
Dp+ and Dp- at the level of a string calculation. Emission 5 e string diagram that contributes to this process is a

OT a tachy_on fro”! a D-brane in a type-0 theory IS given by Aisk with Vc and V¢ operators. These massless R-R vertex
disk amplitude with the tachyon vertex operator in the bUIkoperators are given by

and appropriate boundary conditions on the edge. Note from
Eq. (27) that these boundary conditions dependsprEqua-
tions (27) are in terms of the fields defined on the upper-half
plane, so once we map our tachyon amplitude to the upper Vv, . 3
half plane, the followingn-dependent equations must hold V- 128(Pi i), (35
on the real axis:

Vi (z,2) = (P Tim) V- 12a(P1 1 2):

- - . ViEm_l(Zi Ei):(P+Fi(m))AB3V—1/2A(pi Zj):
l/fM:ﬂl//“: '/II:_??lr//Il (28) _ ~
XV _18(Piyz):, (36)

y=nyv, B=np. (29 _ _ o
where we are using the notation[df0]. The objects in these
The doubling trick[9] extends the string calculation to the vertex operators are defined as
entire complex plane by defining

- — — = = V_1oa(pi zi) =€ @25, (7)) ePi X (@), 37
YM(2)=ny"(2), P (2)=—-n¢(2), (30)
- L — P.=(1%y1)/2, (38)
Y(2)=nv(2), B(2)=nB(2) (31
on the lower half plane. In actual calculationg.and y are r(n):%F yHL Lyt
. . n! #1---Hn
rebosonized in terms of the free bosabsand y as (39
=e Pt xgy, y=e® X 32
P o 32 whereS, is the spin field,y;;=9°...%°% andF,=dC,_;.
The doubling trick identifications oty and 8 can be rewrit- Under the doubling trick, the spin fiel§, will be identi-
ten as fied as
BD=0@+5 (1- 7). Bu(2)=MaPSg(2), (40
o for some matrixM. This matrix can be specifiefl0] by
x(2)=x(2). (33 considering the following OPE’s:

106005-7



DAVID MATTOON THOMPSON

l/f"(Z)SA(W%(Z—W)*”zi(7")ABSB(W)
J2
+... (41)
S o
W(Z)SA(W%(Z—W)_ME(7“)ABSB(W)
. (42)

The doubling trick identification for g is ¥*(z)
= 7D*,y"(z), where D*,=(5%,—¢';). In order for Eg.
(42) to be consistent with Eq41), M must satisfy

(¥)aP=D*,(M™1y"M),4°. (43

This can be rewritten ady*)=D#* (y"M) which implies
thatM is of the form

ay’...yP for p+1 o0dd,» =1,

by?...yPy,; forp+1eveny=1,
M= 0 0 o (44)
cy ...yPy; forp+1lodd,n=-1,
dy? ... yP for p+1even,y =—1.
To fix the phases, the OPE’s
Sa(2)Sg(W)~(z—w) " YC 5+ ... (45)
Sa(2)Se(W)~(z—w) ~%C b+ ... (46)

are used to find thavl "=C~*MTC. Since all they* and

PHYSICAL REVIEW D65 106005

P2

— I K Tp 1
A(CC)y=——5— ETr(Pfrl(m)M+'yM)

2
XTr(P . TomM y,)B(—t/2+1/2,—2s)
~Tr(P_T'ymC T3C)

X B(—t/2—1/2,~2s+1)
—Tr(P_T'ymyM TyyM )

XB(—t/2+1/2—2s+1)|. (49
Since the Euler beta function is defined as
1
B(a,b)=f dy y* H(1-y)* %, (50)
0

we see that the poles in thechannel aran?=(4n—2)/a’
forn=0,1, ... .These poles correspond to the masses of the
closed strings in the (NS,NS—) sector.

To obtainA(C,E)_ , the amplitude foc—C scattering
off a Dp—, from A(C,C), , we must replac , with M _

ande™ *®@”2 with e~ ®@”27172 |t js simple to check that the
amplitude is invariant under replacing with M_. In the

correlation function, there are two factorsef®(®2 coming
from the two R-R vertex operators. After replacing them

with e ®®@”27172 " each one contributes a factor for a
total phase of-1. In summary, we find that

A(C,C),=—-A(C,C)_. (51
This shows that the Dp and Dp- couple with opposite
signs to all (NS-,NS—) fields.

How can this phenomenon be understood in a direct man-
ner? Consider the tadpole amplitude for emission of a closed
string from a D-brane. If the closed string is in one of the
NS-NS sectors, the amplitude is a disk with the closed string
vertex operator in the-{1,—1) picture. For a NS-NS string,

11 anticommute withC, we find the phases up to an overall the amplitude for emission from a Dp can be converted

sign:

+iy%... v forp+lodd,p=1

+4%. .. yPy;, forp+leveny=1

M= 4
+4% .. . yPy,; forp+lodd,n=-1 “7
+iy?...y»  forp+levenny=-—1.

From now on, we will writeM asM ,, to distinguish between
the two forms it takes for fixed p. Equatidd?) gives the
relationships betweell , andM _ as

M,:iiM+'yll. (48)

The amplitude folC— C scattering off a Dp- is [11]

into an amplitude for emission from a Bpby multiplying
by —1 for each factor ofe"® and %*. In the (—1,—1)

picture, the NS-NS vertex operator has as mafsyas does
the corresponding Fock state. Therefore, the-Damplitude

differs from the Dpr amplitude by a factor of€ 1)F, where

F is the right-moving worldsheet fermion number of the
NS-NS closed string state. In other words, -D@and Dp-
have the same tadpole couplings to all (N®NS+) fields
and opposite tadpole couplings to all (NSNS—) fields.

It is clear how to generalize this to a general disk ampli-
tude on a D-brane. To convert a general disk amplitude for a
D+ into the same amplitude with a-B, we multiply by

—1 for eache™® and y*, and we replaceM, with
*iM , v, for each spin field. Since a fermionic state cannot
transform into a bosonic one, the numberMf’s will be
even in any nonzero amplitude, so the sign ambiguity in that
replacement is insignificant.
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VIl. SUMMARY duality of the cylinder diagram, this result can be converted

We set out to find the descent relations for the type-
theories. We found that we must start with either & D+

pair or a D-D— pair and that thet and — are invariant
under the orbifold and kink operations. This means we have
two copies of the usual descent relation chain for the type-0
theories: one for B- branes and one for B branes. We
then asked why we should care about the distinction between
a D+ brane and a B brane. While it is fairly well known
that the stable B and D— have the same coupling to half of
the massless R-R fields and equal and opposite couplings to
the other half, we have shown that the-Cand D- have the
same tadpole couplings to half of the NS-NS fields and equal
and opposite tadpole couplings to the other half.
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APPENDIX A: OPEN STRING SPECTRUM

In this appendix we will find the open string spectrum on
type-ll and type-0 D-branes. We begin by considering the

into an open string loop amplitude. The results are as fol-
ows:

J dl ysngBp, 7le HeosedBp, n)ns ns
dt
= J— _tHo en
J ZtTrNs[e p ]
f dl nsngBp,7le HeosedBp, — 7)ysnis

dt
:—szrR[eftHopen]

(A1)

j Al (Bp.7le Meesed B, nhp
dt
~ [ ST (—1)Fe e
j dl rr(Bp,7|e HdosedBp, — n)rr

dt
=— j 2—tTrR[(—1)Fe‘tH°pen].

closed string exchange amplitudes between boundary states, We will combine Eqs(Al) with the expressiong2] for
which are given if12]. Motivated by the usual worldsheet the type-ll D-branes in terms of boundary states,

IDp)=(|Bp,+)nsns— IBP. —)nsng)
+(|Bp,+)rrT|BP.—)rR)

— for p even(odd) in IIA (1IB) (A2)
IDp)=(|Bp,+)nsns— |BP —)nsng)

—(IBp,+)rr*|BP,~)rR)
IDP)=|Bp,+ nsns— |BP, — Insngfor all pin lIA and 11B (A3)

and the expressions for the type-0 D-branes in terms of boundary states,

|IDp,+)=|Bp,+)nsnst [BP. +)rr
IDp,—)=IBp,— )nsnst [BP. —)rr

— for p even(odd) in OA (0B) (A4)
IDp,+)=[Bp,+)nsns—|BP, +)rR P

IDp,—)=IBp,~ )nsns— IBP, —)rr

Dp,+)=|Bp,+)ns.

| )= Ins-ns for all p in OA and OB. (A5)

|6B1_>:|Bpr_>NS-NS

It is impossible for a R-R string to spontaneously convert into a NS-NS string, or vice versa, so we know that

nsng(Bp, 7' [e MM

cosedBp, 77)g.g=0. (AB)

Now, to find the spectrum on open strings beginning and ending on a stableiiDthe type-0 theories, we will rewrite the

closed string exchange diagram as a trace over open
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string states. We have everything we need to perform this P4 el pd
calculation; combining EqgA1) and(A4), we find
Pi e P4 (B3)
f di(Dp,+|e"MeesedDp, +) |
9Z%—e'9z%,
:f dl nsngBP, + e MesedBp, + s ns 974 e 0974 (B4)
+f dl rr(Bp,+ |e Heosed Bp, + )r.r _ We wish to fin_d the or_bifold of type QA by 1)Ff. This
is an asymmetric, Abelian orbifold with group elements
dt CtH {1,(— 1)Ff}. The untwisted sector, corresponding to the iden-
= f szNs[e open] tity element, is simply the projection of OA on states invari-
ant under 61)Fi. It is clear that the invariant states are
n J' ﬂTrNS[(—l)Fe*tHopen] those in the sectors (NS NS+) and (NS-,NS—). Let us
2t check that we get the same result by representirng)ff as

dt a rotation by 2r on the left-movers. On the NS sector
= | =Trayd (1+(—1)F)e Hopen) ground state vertex operator—l1; the NS sector is invari-
2t ant. To consider the action on the R sector ground state ver-
dt tex operator, we must bosonize the complexified fermions as
= f ~+ Tris:[ @ Mo, (A7) »
\Ij4=elH ,
So we see that the open strings beginning and ending on a _ -
stable Dpt+ in the type-0 theories are NS Proceeding in Ph=g M (B5)
this manner, we can find the spectrum of open strings on all
possible combinations of D-branes in the type-0 and type-land likewise for the other fermions. In terms of these bosonic
theories. The full results for the type-0 theories are given irH fields, the spin operator takes the form
Tables | and Il in Sec. Il. The results for the type-Il theories .
are given in Tables IV and V. , a
O e X s, (B6)
APPENDIX B: ORBIFOLD OF OA /0B
where thes,=+1/2. Since¥* transforms under thed

The action of - 1)Fﬁ can be represented as a3pace- — 9. rotation as(B3), expliH?) transforms as
time rotation on the left movers. Under this rotation, the
left-sector boson$NS) are invariant and the left-sector fer- Q2R gimg(1/2)iH4 _ _ g(1/2)iH* (B7)

mions (R) pick up a minus sign. We can pick any spatial

plane for this rotation and for our purposes here we select th‘?herefore, the spin field, and subsequently the left-moving R
8-9 plane. sector vertex operator, picks up a minus sign from the 2

The situation is greatly simplified if we use complexified . . -vion- the (R R—) and (R- R+) sectors are proiected
coordinate$1] for those left-moving fields whose indices are out. 1on. (R,R~) (R=,R+) Proj

in the 8-9 plane, In the twisted sector, the boundary conditions on a@é
and ¥ fields are as follows:

Pi= i(«/f8+ie!/9) -
V2 ' 9Z4o+2m)=e2" 974 o),

— 4, — A~ 2mi 4,
W:%(l/ls_iwg), (B1) 9Z%o+2m)=e 2" yZ%( o), (B8)

Y4 o+ 2m)=e?TETIpA( ),

1 y i 2
ﬁZ4:E(aX8+iﬁX9), Vi(o+2m)=e 2METIPA (), (B9)

wherev=0 for R, v=1/2 for NS, andB3=1. At first glance,
1 it appears as though the boundary conditions are unchanged.
E However, if we continuously change the boundary condition
factor exp(2riB) from =0 to =1, we see that the moding
With this notation, a rotation on the left-movers by anglia  of the Fourier coefficients has changed franfor both 92
the 8-9 plane has the following action on the fields: anddzZ* andn+ v for both w* and ¥ to

9Z%= " (9X8—iaX9). (B2)
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a* n+1, ¥4 10y =4 w4 0y={P¥*, ¥4|0)=|0)0.
_ (B15)
a* n—1,
(B10) However, now the GSO condition on the left-movers,
¥4 n+1+v,
_ (—1)F[0)==]0) (B16)
¥4 n—1-v»
has become
This phenomenon, known as spectral flow, has an important
consequence for the ground state of the theory. When we (—1)F|0) =—w4 —1)F|oy=F|0)". (B17)

began with8=0, the ground state was defined as

. T We see that the GSO conditions on the left-movers has been
v..,l00=%,;., ,0)=0 for n=0,1,..., (B11) reversed.

L . _ This leaves us with the following twisted sector:
with similar equations for the othé¥ . The effect of continu-

ously changinggB from 0 to 1 is that we replace with v (NS—,NS+) (NS+,NS-) (R—,R—) (R+,R+).
+1 in these equations. The ground state now satisfies the (B18)
conditions

— Of these four groups of states, we keep only those that will
Wr, . 4|0y="; [0)=0 for n=0,1,....(B12)  combine with the untwisted sector to give us a modular in-

) variant theory. For Abelian orbifolds, the correct criteria for
The [0) state is no longer the ground state becaW§$0)  the twisted states to ensure modular invariance is level

#0 and\If‘lV|0>=0. The true ground state is matching. In the (NS ,NS+) and (NS+,NS—) sectors,

there is no way to obtaih,=L,, S0 we drop these states.

In the end, we are left with the (NSNS+) and
(NS—,NS—) states from the untwisted sector and the
(R—,R—) and (R+,R+) states from the twisted sector.

\[rﬂo)’:\[r;‘}\[fﬂo):() (B14) Combined, these give the spectrum of the type-OB theory as
given in Eq.(2b). The argument works in the same way to
and get type OA from OB.

|0y’ =w3|0) (B13)

since
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