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ABSTRACT

A new formulation of the weak pressure gradient approximation (WPG) is introduced for parameterizing

large-scale dynamics in limited-domain atmospheric models. This newWPG is developed in the context of the

one-dimensional, linearized, damped, shallow-water equations and then extended to Boussinesq and com-

pressible fluids. Unlike previous supradomain-scale parameterizations, this formulation of WPG correctly

reproduces both steady-state solutions and first baroclinic gravity waves. In so doing, this scheme eliminates

the undesirable gravity wave resonance in previous versions of WPG. In addition, this scheme can be ex-

tended to accurately model the emission of gravity waves with arbitrary vertical wavenumber.

1. Introduction

In recent decades, single-column atmospheric models,

including cloud-resolving models and single-column

versions of global climate models, have come into wide-

spread use as a means to develop and test new parame-

terizations for use in global climate models. To compare

with observations, these limited-domainmodels are often

forced with an observed profile of large-scale ascent

(equivalently, a profile of large-scale convergence). This

approach, however, has its drawbacks. For example,

convergence profiles often contain significant errors,

whether they come from observations (Mapes et al. 2003)

or reanalysis (Roads et al. 1998).Additionally, forcing the

model in this way neglects feedbacks on the large-scale

circulation (Randall et al. 1996; Hack and Pedretti 2000)

by unrealistically decoupling the large-scale vertical ve-

locity from moist convection (Mapes 1997).

One way to solve these problems is to allow the model

to specify its own convergence profile by parameterizing

the large-scale dynamics (Sobel and Bretherton 2000),

a method dubbed supradomain-scale (SDS) parame-

terization byRomps (2012b). On themost basic level, an

SDS parameterization ingests environmental and mod-

eled profiles of temperature and humidity and uses them

to calculate the convergence profile, which is defined by

the buoyancy of the column relative to its surroundings.

Currently, there are two main paradigms for SDS pa-

rameterization, known as the weak temperature gradi-

ent approximation (WTG; e.g., Raymond and Zeng

2005) and the weak pressure gradient approximation

(WPG; e.g., Romps 2012b). The premise of WTG is that

vertical advection of potential temperature relaxes

buoyancy differences between the column and the en-

vironment on some fixed time scale (Raymond andZeng

2005; Sessions et al. 2010; Wang and Sobel 2012), while

WPG relies on a parameterized form of the pressure

gradient force between the column and the environment

to determine vertical velocity (Holton 1973; Nilsson and

Emanuel 1999; Raymond and Zeng 2000; Kuang 2008;

Blossey et al. 2009; Kuang 2011; Romps 2012a,b). Both

schemes address the traditional problems listed above,

but thus far neither approach has yielded an entirely

satisfactory method for SDS parameterization.

Previous work has shown that prior implementations

of WPG and WTG are inherently unable to adequately

model steady-state and transient behavior in the same

simulation; parameter values must be tuned depending

on which is of interest (Romps 2012b). However, in

numerical simulations, WPG appears to capture the

dynamics of the full 3D atmosphere more realistically

than WTG (Romps 2012a). In particular, a buoyancy

perturbation in a column can trigger ascent both above

and below the perturbation; this nonlocal ascent has

the potential to trigger moist convection by removing a
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convective inhibition layer (Bretherton and Smolarkiewicz

1989; Mapes 1993). Romps (2012a) found that WPG was

able to replicate this nonlocal behavior, while WTG can,

by definition, only produce ascent at levels with positive

buoyancy perturbations.

WPG introduces another difficulty, however. A col-

umn coupled to WPG behaves as if it were immersed in

a bath of plane waves; for this reason, WPG is some-

times referred to as the damped-wave method (Kuang

2008; Wang et al. 2013). Around the frequency of these

plane waves, a buoyancy anomaly in the column can

trigger a resonance (with convection in phase with plane-

wave-induced ascent) rather than the buoyancy anomaly

simply damping away (as would occur by gravity wave

emission from the column in two or three dimensions).

In general, this resonant behavior is undesirable for a

scheme that seeks to parameterize the interaction be-

tween a single column’s anomalous convection and its

anomalous large-scale convergence.

In this paper, we seek to resolve these difficulties by

deriving amodified version ofWPG in the context of the

1D, linearized, damped, shallow-water equations. We

do this for simplicity, but this does not limit the appli-

cability of the results. The shallow-water equations can

be thought of as representing an atmosphere that only

permits one vertical mode; water layers of different

depths approximate different vertical modes. To gain

some intuition for this connection, we may think of the

shallow-water system as representing the free tropo-

sphere: a source of mass in the shallow-water system

corresponds to an injection of mass into the free tropo-

sphere from the boundary layer, which is associated with

latent heating. Thanks to the mathematics relating the

shallow-water equations to vertical modes of a stratified

fluid, it is straightforward to extend the shallow-water

results to the full atmosphere. Section 2 derives analytical

solutions to a 1D shallow-water system. This information

is then used in section 3 to derive a new and improved set

ofWPGequations for the shallow-water system. Section 4

calculates—for the benchmark system, WTG, and the old

and new WPG—the amplitude of the height anomaly

driven by an oscillating source. Those solutions are com-

pared for both inviscid and damped flow in section 5,

which demonstrates some advantages of the new WPG

scheme over other SDS schemes. Section 6 extends the

WPG scheme to a continuously stratified fluid. Section 7

concludes with some discussion.

2. Shallow-water equations

The goal of an SDS scheme is to accurately model the

large-scale flow between an atmospheric column and its

environment. A good SDS scheme will be able to do two

things: 1) remove unforced virtual temperature anom-

alies from the column on appropriate time scales (i.e.,

the time scales for gravity waves to exit the column)

and 2) generate the correct virtual temperature anomaly

in the presence of a steady-state heating anomaly (where

the virtual temperature anomaly is made possible by

a frictional drag on the flow). Both of these behaviors

occur in the one-dimensional, linearized, damped, shallow-

water equations. Because we can derive analytical solu-

tions for this system, this is where we begin our analysis.

For a shallow-water system of depth D, source Q

(m s21), and Rayleigh-damping time scale 1/a, the fol-

lowing equations govern a small height perturbation h

and a small horizontal velocity u:

›th52D›xu1Q and (1)

›tu52g›xh2au . (2)

This system relates to the tropical free troposphere

(where the Coriolis parameter can be approximated as

zero) if we think of mapping h onto the mass of the free

troposphere and mapping Q onto the convective mass

flux into the free troposphere. Using these equations, we

wish to derive two time scales: 1) the transient time scale

for unforced height anomalies to exit a column and

2) the steady-state time scale that relates a column’s

steady-state height perturbation h to the applied steady-

state forcing Q.

To begin, wemust pick a ‘‘column’’ of the 1D shallow-

water system that we will poke (with an initial height

anomaly) and prod (with a steady-state mass source).

Without any loss of generality, we choose our column as

the region from x 5 2L1 to x 5 L1. For the transient

case, this is all that we need to define. But, for the steady-

state case with drag, we can only achieve a steady state if

the source in the column is balanced elsewhere by a sink

(i.e., there is no net source summed across the entire

domain). In the absence of any drag (i.e., a 5 0),

switching on a steady source in the column would gen-

erate two shock waves of h anomaly that would travel

forever up and down the x axis, and the height anomaly

in the column would hold steady. In the presence of

drag, however, switching on a steady source in the col-

umn would cause the h anomaly in the column to grow

ad infinitum as the pressure gradient force tries to push

the growing mass anomaly out to larger and larger dis-

tances against the countervailing drag force.

For this reason, we define a region of compensating

mass sink of size L2 to either side of the column. As

depicted in Fig. 1, the sourceQ in the column of size 2L1

is balanced by an equal and opposite source2QL1/L2 in

the wings of combined size 2L2. As shown below, the
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choice of L2 has a negligible impact on the evolution of

transients, but it plays a crucial role in defining the

magnitude of height anomalies in the presence of

a steady-state forcing.What setsL2?While it is plausible

that L2 may be comparable to the dissipative scaleffiffiffiffiffiffiffi
gD

p
/a (i.e., the product of the wave speed and the

damping time scale), we deem it equally plausible that

L2 is set, in reality, by the dissipative effects of the

convective response to the passing wave. In this latter

scenario, anomalous convection in some column would

generate a transient heating of its surroundings by the

emitted gravity waves. This transient heating may in-

hibit convection, leading to an anomalous cooling that

damps the wave. If that transient warming is sufficiently

efficient at inhibiting convection, then this damping via

convective deficit could serve as a sink for the gravity

waves well before the waves extend to the dissipative

scale. We do not attempt to resolve this difficult issue

here. Instead, we simply leave L2 as a free parameter

and leave its determination to future work.

a. Transients

In the study of transients, we will assume that the time

scale for inviscid gravity waves to exit the column

(L1/
ffiffiffiffiffiffiffi
gD

p
) is much smaller than 1/a, the Rayleigh damping

timescale. Therefore, we can safely set a5 0. Taking ›t of

Eq. (1) and2D›x of Eq. (2) and adding the results, we find

an inhomogeneous wave equation for h:

›2t h2 gD›2xh5 ›tQ . (3)

The solution to Eq. (3) for an arbitrary Q is given by

h(x, t)5
1

2

ðt
2‘

dt0fQ[x1c(t2 t0), t0]1Q[x2c(t2 t0), t0]g ,
(4)

where c5
ffiffiffiffiffiffiffi
gD

p
is the wave speed. Thus, for an initial

pulseQ(x, t)5Q0(x)d(t), h(x, t) is given by twowaves of

the same shape asQ0, traveling to the left and right with

speed c.

Consider a system with zero h for time t , 0 that is

given an instantaneous jolt at t5 0 defined by the source

Q(x, t)5

�
11

L1

L2

�
h0d(t)H(L12 x)H(L11 x)

2
L1

L2

h0d(t)[H(L11L22 x)H(L11L21 x)] ,

where H is the Heaviside unit step function. This gen-

erates h(x) of the same shape as that depicted in Fig. 1,

with an initial amplitude in the column of h 5 h0. The

solution, from Eq. (4), is

h(x, t)5h1(x, t)1 h2(x, t) ,

where

h6(x, t)5

�
11

L1

L2

�
h0
2
H(L12x6ct)H(L11x7ct)

2
L1

L2

h0
2
H(L11L22x6ct)H(L11L21x7ct).

This solution is just the sum of top-hat pulses traveling in

the negative (h_) and positive (h1) directions from the

source and sink regions at speed c. The time scale for the

entire disturbance to propagate out of the column (de-

fined as2L1 , x, L1) is on the order of (L1 1 L2)/c. If

L2 is comparable in size to L1, then this time scale is of

order L1/c. On the other hand, if we assume that the

compensating regions are much larger than the width of

the column (i.e., L2 � L1), then the amplitude of the

disturbance from the compensating regions is small

relative to the disturbance from the column. In this case,

we can safely ignore this secondary disturbance from the

compensating regions, and the time scale for transients

to propagate out of the column is still

t5
L1

c
(transient timescale) . (5)

b. Steady state
For the steady-state case, we consider aQ of the same

shape as in Fig. 1:

FIG. 1. The setup of the 1D shallow-water forcings. The forcingQ

in the column of size 2L1 is balanced by an equal and opposite

forcing of 2QL1/L2 in the wings of combined size 2L2.
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Q(x, t)5

�
11

L1

L2

�
Q0H(L12 x)H(L11 x)

2
L1

L2

Q0H(L1 1L2 2 x)H(L11L21 x) .

Assuming a positivea, the steady-state solution to Eqs. (1)

and (2) is

u(x)5

8>>>>>>><
>>>>>>>:

Q0

D
x jxj#L1

Q0L1

DL2

sign(x)(L11L22 jxj) L1, jxj,L11L2

0 L1 1L2 # jxj
(6)

and

h(x)5

8>>>>>>><
>>>>>>>:

aQ0

2c2
[L1(L11L2)2 x2] jxj#L1

aQ0L1

2c2L2

(L11L22 jxj)2 L1, jxj,L1 1L2

0 L11L2# jxj

.

(7)

This solution is shown in Fig. 2. By averaging over the

column (x 2 [2L1, L1]), we see that the mean steady-

state height anomaly is

1

2L1

ðL
1

2L
1

dx h(x)5
a

c2
L2
1

�
1

3
1

1

2

L2

L1

�
Q0 . (8)

This equation for the mean height anomaly is of the

form tQ0, where t is a time scale relating the source Q0

to the mean steady-state height anomaly in the column.

Therefore, we see that this time scale is

t5
aL2

1

c2

�
1

3
1

1

2

L2

L1

�
(steady-state timescale). (9)

3. New WPG

WPG reduces Eqs. (1) and (2) to an equation for the

evolution of h in a single column embedded in a quies-

cent environment. The first step in deriving the WPG

version of these equations is to take the divergence of

Eq. (2). Next, we approximate the resulting pressure

gradient term 2›2xh by h/L2, where L represents the

distance over which the height anomaly (equivalently,

the pressure anomaly) relaxes to zero; the precise value

ofLwill be determined below. Finally, we replaceawith

the to-be-determined constant a*. This yields the stan-

dard WPG equations

›th52Dd1Q and (10)

›td5
gh

L2
2a*d , (11)

where d 5 ›xu is the divergence. As shown by Romps

(2012b), this set of equations is unable to capture si-

multaneously both the transient and steady-state time

scales. Here, we will add a term to theWPG equations in

the hope of ameliorating this situation.

The fundamental problem with the WPG equations is

that, in the inviscid limit (a / 0), they describe an os-

cillating system instead of a damped system. If we think of

WPG as describing a column immersed in a quiescent

environment, then perturbations in the column should

exit the column on a gravity wave propagation time scale,

causing the perturbation in the column to damp toward

zero. Instead, initial perturbations in the WPG system

lead to oscillations: in the case of an unforced and inviscid

fluid (Q5 a5 0), Eqs. (10) and (11) give ›2t h52(c/L)2h.

This describes a normal mode with period 2pL/c instead

of decay toward zero on a time scale of L/c.

Which of the Eqs. (10) and (11) is responsible for this

bad behavior? Equation (10) cannot be at fault because

it enforces a simple and irrefutable statement of mass

conservation for the column. Equation (11), on the

FIG. 2. The steady-state solution corresponding to Eqs. (6)

and (7).
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other hand, is not as ironclad. Its weak point is the

approximation

2›2xp’
g

L2
h , (12)

where an overbar denotes an average over x2 [2L1,L1].

This equation can be written as

2
g

L1

›xh

����L1

2L
1

’
g

L2
h .

In other words, it assumes that the height gradients at

the boundaries of the column are proportional to the

mean height perturbation in the column. For a transient

height anomaly, however, this is not the case. Consider

d 5 0 and h5 h0 exp(2x2/L2
1) at t 5 0. Taking Q 5 a 5

0, this height perturbation evolves as two counter-

propagating Gaussian disturbances: one has velocity c,

the other has velocity2c, and both have an amplitude of

h0/2. This is depicted in Fig. 3. For t , L1/c, the mean

height anomaly in the column is positive and the pres-

sure gradient force (which is proportional to the height

gradient in the shallow-water model) at x 5 6L1 is

accelerating fluid out of the column. For t . L1/c,

however, the mean height anomaly is still positive, but

the pressure gradient force has switched signs and is now

accelerating fluid into the column. This example illu-

minates a key piece of physics missing from the ap-

proximation in Eq. (12): the back reaction caused by the

column’s modification of its immediate environment.

Height anomalies initially within the column at time

t are just outside the column at time t 1 L1/c. In this

transient case, the difference in height anomalies be-

tween the column and its immediate environment is not

h(t), as assumed in previous implementations of WPG

but is, instead, something akin to h(t)2 h(t2L1/c)’
(L1/c)›th. This suggests that a term similar to (L1/c)›th

might belong on the right-hand side of Eq. (11).

Note that the h term on the right-hand side of Eq. (11)

cannot be entirely replaced by a ›th term because the

former is needed to make steady-state solutions possible

in the presence of a constant, nonzeroQ. Therefore, we

explore the consequences of adding the term (L/c)›th,

multiplied by g/L2 and a to-be-determined dimension-

less number b, to the right-hand side of the divergence

equation. This gives

FIG. 3. For a stationary (d5 0)Gaussian (h} e2x2/L2
1 ) centered on the column at t5 0, the solution for t. 0 is of two

Gaussians propagating to the left and right. (bottom) The average h in the column (h, solid curve) decreases

monotonically, but the pressure gradient force at the edges of the column (2›xhjL1

2L1
, dashed curve) switches from

divergent to convergent at t5 1. This mismatch between h and2›xhjL1

2L1
motivates the addition of a new term to the

WPG equations.
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›th52Dd1Q and (13)

›td5
gh

L2
1

bg

Lc
›th2a*d . (14)

To put Eq. (14) in a form more easily integrated, we

define a new variable d0 related to d and h as

d0 5
d2bgh/cL

12ba*L/c
.

Expression (14) benefits from a cancellation of terms

when written in terms of d0. The resulting equations are

›th52Dd1Q , (15)

›td
05

gh

L2
2a*d0, and (16)

d5 d0 1
bL

c
›td

0 . (17)

Here, Eq. (16) is a prognostic equation for d0, and
Eq. (17) is a diagnostic equation giving d—the actual

divergence—in terms of d0 and its derivative.

To find the correct values for b, L, and a*, we reduce

these equations to a single equation for h and study

its steady-state and transient behaviors. The equations

reduce to

›2t h1 (a*1bc/L)›th1
c2

L2
h5 ›tQ1a*Q . (18)

For transient cases withQ5 0, a test solution of h5 evt

gives a dispersion relation of

v52

�
a*

2
1

bc

2L

�
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
a*

2
1

bc

2L

�2

2
c2

L2

s
. (19)

As discussed in section 2a, transients should exit the

column on a time scale of L1/c in the inviscid limit. This

is achieved by selecting

b5 2 and (20)

L5L1 , (21)

which, in the inviscid limit, reduces Eq. (19) to v52c/L1.

For a steady-state case with constantQ, the solution to

Eq. (18) is h 5 (a*L2/c2)Q, which yields the time scale

found in section 2b if we choose

a*5a

�
1

3
1

1

2

L2

L1

�
. (22)

For the oldWPG, b5 0 in Eq. (18), so there is no way

to simultaneously capture the transient time scale and

the steady-state time scale. Selecting L 5 L1, we have

two choices for a* in the old WPG. If we match the

transient time scale, then

a*5 2c/L1 .

We will call this ‘‘version 1’’ of the old WPG. If we

match the steady-state time scale, then we must choose

a* as defined by Eq. (22).We will call this ‘‘version 2’’ of

the old WPG.

WTG is similarly unable to capture both the transient

and steady-state time scales. In the relaxed form of

WTG (e.g., Raymond and Zeng 2005), Eq. (1) is ap-

proximated by

d5
h

Dt
, (23)

where t is the time scale over which height differences

between the column and the environment are removed.

If we match the transient time scale (i.e., the time for

a gravity wave to propagate out of the column), then

t5
L1

c
.

This is the form of t most commonly used in the litera-

ture (e.g., Raymond and Zeng 2005; Sessions et al. 2010;

Wang and Sobel 2011); we will call this ‘‘version 1’’ of

WTG. An alternative, but potentially interesting choice,

is to match the steady-state time scale, which gives

t5
a*L2

1

c2
.

We will call this ‘‘version 2’’ of WTG. The equations for

all five SDS schemes are listed in Table 1.

TABLE 1. Definitions of the horizontal divergence d in the five

supradomain-scale schemes in the context of the damped shallow-

water equations with damping rate a, column of width 2L1, and

compensating regions of net width 2L2. Here, g is the gravitational

acceleration, c5
ffiffiffiffiffiffiffi
gD

p
is the wave speed, and h is the mean height

anomaly in the column.

SDS scheme Equations for d

New WPG ›td
0 5

gh

L2
1

2a

�
1

3
1
1

2

L2

L1

�
d0

d5 d0 1
2L1

c
›td

0

Old WPG version 1 ›td5
gh

L2
1

2
2c

L1
d

Old WPG version 2 ›td5
gh

L2
1

2a

�
1

3
1
1

2

L2

L1

�
d

WTG version 1 d5
gh

L1c

WTG version 2 d5
gh

aL2
1

�
1

3
1
1

2

L2

L1

�21
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4. Solutions to an oscillating source

Althoughwe have shown thatWPG canmatch the full

1D solution for inviscid transient and steady-state cases,

so far we have not demonstrated howWPGperforms for

cases that do not fit neatly into either of these categories.

To explore solutions that lie somewhere between in-

viscid transients and damped steady states, we calculate

here solutions to an oscillating mass source. These so-

lutions are compared against each other in section 5.

a. Benchmark

Consider a source of the shape depicted in Fig. 1 that

oscillates in time with angular frequency v:

Q(x, t)5

�
11

L1

L2

�
Q0 cos(vt)H(L12x)H(L11x)

2
L1

L2

Q0 cos(vt)H(L11L22x)H(L11L21x).

(24)

In the appendix, we derive the solution generated by this

forcing for the case of the inviscid (i.e., a 5 0) shallow-

water equations. In this inviscid case, the average height

anomaly over the column is h(t)5 h0 cos(vt1f), where

the amplitude h0 is

hbenchmark
0 5

Q0

v

"�
c

vL1

sin

�
vL1

c

���
11

L1

L2

�
sin

�
vL1

c

�
2

L1

L2

sin

�
v(L11L2)

c

�	�2

1

�
211

c

vL1

sin

�
vL1

c

���
11

L1

L2

�
cos

�
vL1

c

�
2

L1

L2

cos

�
v(L11L2)

c

�	�2
#1/2

. (25)

In the presence of damping (a. 0), an analytical solution

is not possible, so the damped shallow-water equations

are integrated numerically to obtain the value of h0.

b. New WPG

In the column, Eq. (24) takes the form Q(t) 5
Q0 cos(vt). Therefore, to find the corresponding solu-

tion from the new WPG scheme, we substitute Q 5
Q0e

ivt, with v and Q0 both real, into Eq. (18) with the

values of b, L, and a* given by Eqs. (20)–(22). We then

seek a solution of the form h 5 h0e
ivt1if for real con-

stants h0 and f. The resulting dispersion relation for v is

2v2h01 (a*1 2c/L1)ivh01 (c2/L2
1)h0

5 (iv1a*)Q0e
2if.

For brevity, the a* notation is retained here, although its

value is given by Eq. (22). Solving for h0, we obtain

hWPG,new
0 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21a*2

(c2/L2
1 2v2)21 (a*1 2c/L1)

2v2

vuut Q0 .

(26)

c. Old WPG version 1

The amplitude for version 1 of the old WPG, which is

tuned to match the transient time scale, is obtained by

setting b to zero in Eq. (18) and settingL5L1 and a*5
2c/L1, which gives the dispersion relation

2v2h01 (2c/L1)ivh01 (c2/L2
1)h05 (iv1 2c/L1)Q0e

2if.

Solving for h0, we obtain

hWPG,old,v1
0 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 (2c/L1)

2
q
v21 (c/L1)

2
Q0 . (27)

d. Old WPG version 2

The amplitude for version 2 of the old WPG, which is

tuned to match the steady-state time scale, is obtained

by setting b to zero in Eq. (18) and using the same values

for L and a* used by the new WPG. This gives the dis-

persion relation

2v2h01a*ivh01 (c2/L2
1)h05 (iv1a*)Q0e

2if .

Solving for h0, we obtain

hWPG,old,v2
0 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21a*2

(c2/L2
12v2)21a*2v2

vuut Q0 . (28)

e. WTG version 1

For version 1 of WTG, the dispersion relation is

ivh052ch0/L11Q0e
2if ,

which gives

hWTG,v1
0 5

Q0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 c2/L2

1

q . (29)
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f. WTG version 2

For version 2 of WTG, the dispersion relation is

ivh052
c2h0
a*L2

1

1Q0e
2if ,

which gives

hWTG,v2
0 5

Q0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 1 c4/(a*2L4

1)
q . (30)

5. Comparison of oscillating solutions

To facilitate a comparison of these amplitudes, let

us nondimensionalize the equations with respect to the

gravity wave time scaleL1/c. Introducing nondimensional

variables denoted by a tilde,

~h05
c

L1Q0

h0 ,

~v5vL1/c ,

~a5aL1/c , and

~a*5a*L1/c ,

the amplitudes become

~h
benchmark

0 5
1

~v2
(fsin(~v)[(11r) sin(~v)2r sin(~v1 ~v/r)]g2

1f2~v1sin(~v)[(11r) cos(~v)

2rcos(~v1 ~v/r)]g2)1/2 ,
(31)

~h
WPG,new

0 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~v21 ~a*2

(12 ~v2)21 (~a*1 2)2~v2

s
, (32)

~h
WPG,old,v1

0 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~v21 4

p
~v21 1

, (33)

~h
WPG,old,v2

0 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~v21 ~a*2

(12 ~v2)2 1 ~a*2~v2

s
, (34)

~h
WTG,v1

0 5
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~v21 1
p , and (35)

~h
WTG,v2

0 5
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~v21 1/~a*2
p , (36)

where

r[L1/L2 .

Recall that Eq. (31) is for inviscid flow only, while the

other equations are for general damping. In section 5c,

numerical simulations of the damped shallow-water

equations will be used instead of Eq. (31).

a. Inviscid oscillations for large and small ~v

For ~v � 1, the mass added to the column during the

positive phase of Q does not propagate significantly out

of the column before it is removed by the negative phase

of Q. Therefore, the amplitude h0 is simply equal toÐ p/2
0 dtQ0 cos(vt), which gives ~h0 5 1/~v. The benchmark

solution and all of theWPG andWTG schemes give this

behavior, which can be confirmed by taking the large-~v

limit of Eqs. (31)–(36).

For ~v � 1, not all of the SDS parameterizations are

equivalent, even in the inviscid case. In the limit of

~v/ 0 for inviscid flow, the amplitudes are

~h
benchmark

0 5

�
1

3
1

1

2

L2

L1

�
~v , (37)

~h
WPG,new

0 5 ~v , (38)

~h
WPG,old,v1

0 5 2, (39)

~h
WPG,old,v2

0 5 ~v , (40)

~h
WTG,v1

0 5 1, and (41)

~h
WTG,v2

0 5 0. (42)

Note that the benchmark amplitude scales as ~v in the

small-~v limit. This is caused by gravity waves from the

adjacent sink regions that propagate into the column.

For ~v5 0, the solution is simply an inviscid steady state;

without any Rayleigh damping, no pressure gradient

(i.e., no h gradient) is needed to drive the flow, so ~h0 5 0.

Therefore, the ~h0 ; ~v scaling reflects the approach to an

inviscid steady state as ~v is decreased toward zero.

Both the new WPG and version 2 of the old WPG

capture the ~h0 ; ~v scaling. An important difference,

however, is that these schemes miss the (1/3 1 L2/2L1)

factor in that scaling relationship. In the benchmark

simulations, this dependence on L2 is caused by the fact

that a larger sink region (i.e., largerL2) requires a longer

time for the peak of the sink signal to reach the column.

This allows the height anomaly in the column to reach

a larger amplitude before it is quenched by gravity

waves from the sink regions. Since neither the newWPG

scheme nor version 2 of the old WPG scheme know

anything about L2 in the absence of damping, it is not

possible for them to capture this effect. The other

schemes—version 1 of the old WPG and both WTG
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schemes—are unable to capture any ~h0 ; ~v scaling in

the small-frequency limit.

b. Inviscid oscillations for all ~v

For one-dimensional, inviscid, shallow water, an os-

cillating source Q(x, t) of the form of Eq. (24) gives rise

to height oscillations in the column with an amplitude

given by Eq. (31). In the column, this source simplifies to

Q(t) 5 Q0 cos(vt). When subjected to this Q(t) under

the assumption of inviscid flow (i.e., a5 0), the five SDS

schemes produce height oscillations with amplitudes

given by Eqs. (32)–(36) with ~a*5 ~a5 0.

These amplitudes are plotted as a function of ~v in

Fig. 4 for the case ofL1/L25 1. The black curve gives the

benchmark solution. The green and blue curves corre-

spond toWTG and the oldWPG, respectively; solid and

dashed curves correspond to version 1 and version 2,

respectively. The red curve plots the solution from the

new WPG scheme. Note that WTG version 2 (dashed

green curve) does not appear on this plot because its h0
is identically zero when ~a*5 0. With that exception, all

the other schemes do well at matching the benchmark

amplitude for large ~v. As discussed in the previous

section, this agreement at large ~v is a trivial conse-

quence of the forcing period being much smaller than

the gravity wave propagation time.

At small ~v, the behavior is described by Eqs. (37)–(42).

The new WPG scheme and version 2 of the old WPG

scheme scale their amplitude in proportion to ~v like the

benchmark solution but offset by an overall factor of

1/3 1 L2/2L1. The other schemes do poorly in the

small-~v limit.

For ~v5 1, versions 2 of WTG and old WPG are both

highly discrepant with each other and the benchmark

solution: the benchmark has ~h0 ; 1, WTG version 2 has
~h0 5 0, and oldWPG version 2 has ~h0 5‘. Asmentioned

above, version 2 of WTG is identically zero for all ~v

because it is designed to move height anomalies out of

the column on a time scale proportional to a, which is

zero in the inviscid limit. Version 2 of the old WPG has

a resonance at ~v5 1, which manifests itself as an infinite
~h0 at that frequency. This resonance occurs because that

scheme interprets any height anomaly in the column as

a consequence of the column sitting in an infinite plane

wave of height anomalies with frequency L1/c. An oscil-

latory forcing at this frequency is interpreted by this

scheme as an amplification of the plane-wave amplitude.

c. Damped oscillations

To evaluate the WTG and WPG schemes in the pres-

ence of damping (a . 0), the benchmark solutions must

be simulated numerically. The amplitudes obtained from

these numerical simulations are plotted as black circles

in Fig. 5, which gives the amplitudes ~h0 for a range of ~v,

~a, and L1/L2. The colors and line styles (solid versus

dashed) are as in Fig. 4. From left to right, the columns

range from ~a5 0:1 to 0.001. From top to bottom, the rows

range from L1/L2 5 1 to 0.01. Each plot depicts log10
~h0

as a function of log10~v, with the abscissa ranging from

~v5 1024 to 10.

The choices of ~a, ~v, and L1/L2 depicted here are

motivated by the following considerations. Imagine that

the column (i.e., the region from 2L1 to L1) represents

a patch of atmosphere comparable in size to a GCM

grid column, that is, with a width on the order of 100 km.

For L1/L2 5 1, any convective anomaly in the column is

compensated for by a convective anomaly of compara-

ble magnitude, but opposite sign, in the adjacent grid

cells. On the other hand, it is unlikely that the com-

pensating region would be significantly smaller than one

grid cell, so we consider L1/L2 5 1 as the upper limit for

this ratio. At the lower limit, we consider L1/L2 5 0.01,

which implies a compensating region on the order of

10000km. Since this is already comparable to the circum-

ference of Earth, we take this as the lower limit of L1/L2.

A plausible constraint on ~v can be obtained by re-

quiring that gravity waves are able to communicate

signals across the compensating region on a short time

scale compared to one period of the oscillation; other-

wise, the contemporaneous oscillations of the source

and sink regions would be acausal. Multiplying the

gravity wave speed c by the time scale of the oscillation

FIG. 4. For inviscid dynamics (a 5 0) and L1/L2 5 1, the non-

dimensionalized amplitude ~h0 in response to an oscillatory forcing

Q with nondimensionalized angular frequency ~v.
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1/v and requiring it to be larger thanL2, we obtain c/v.
L2, which can be rewritten as ~v,L1/L2. In Fig. 5, this

region is occupied by log10~v, 0 in the top row,

log10~v,21 in the middle row, and log10~v,22 in the

bottom row. Further consideration of causality leads

us to conclude that the maximum size of the sink region

L2 cannot exceed the dissipative scale c/a (i.e., the

length scale over which gravity waves are dissipated by

Rayleigh damping). This implies that we should restrict

our attention to ~a#L1/L2. For a, a range of ~a from 0.1

to 0.001 with c5 50m s21 and L1 5 100 km corresponds

to a range of 1/a from 0.2 to 20 days. As shown byRomps

(2014), moist convection can generate a damping time

scale in the range of 1–10 days, although the precise time

FIG. 5. The nondimensionalized amplitude in response to an oscillatory forcing with nondimensionalized angular frequency. Plots of

log10(
~h0) vs log10(~v) are shown for all combinations ofL1/L25 (top) 1, (middle) 0.1, and (bottom) 0.01 and nondimensionalized ~a5 (left)

0.1, (center) 0.01, and (right) 0.001. Results are shown for benchmark numerical model (black circles),WTG version 1 (green solid),WTG

version 2 (green dashed), old WPG version 1 (blue solid), old WPG version 2 (blue dashed), and new WPG (red).
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scale depends on the convective mass flux and the baro-

clinicity of the circulation.

Note that versions 1 of WTG and old WPG give the

same curves for ~h0 in all panels of Fig. 5. This is caused

by the fact that the amplitudes in Eqs. (33) and (35) do

not depend on either L2 or a. As in the inviscid case,

their amplitudes plateau at small ~v, resulting in poor

behavior there. Version 2 of WTG is increasingly bad as

~a decreases, with the amplitude going to zero in the

inviscid limit. Version 2 of the old WPG scheme con-

tinues to exhibit a resonance at ~v5 1, although the ad-

dition of damping prevents the amplitude from going to

infinity. The newWPG scheme performs very well when

L1 and L2 are of the same order of magnitude, as shown

by the excellent agreement between the black and red

curves in the top row of Fig. 5. At smaller L1/L2 ratios,

the new WPG scheme performs well at small frequen-

cies (~v � 1, where the steady state prevails, and so

versions 2 of WTG and WPG also perform well) and

around one and larger frequencies (~v* 1, where tran-

sients dominate, and so versions 1 of WTG and WPG

also perform well). In these respects, the new WPG

combines the best aspects of previous SDS schemes.

Where the newWPG is most deficient is for ~v; 0:01 for

the smallest ~a (0.001) and the smallest L1/L2 (0.01). For

that combination of ~v, ~a, and L1/L2, the frequency is

large compared to the damping, making the flow prac-

tically inviscid. Since L2 is large compared to L1, com-

parison of Eqs. (37) and (38) correctly predicts that the

new WPG scheme will underestimate the amplitude by

a factor of L2/2L1 5 50.

6. Extension to continuously stratified fluids

Given an SDS scheme for the shallow-water equations,

it is straightforward to extend it to a continuously stratified

fluid. Consider the linearized, Rayleigh-damped, hydro-

static, Boussinesq equations described by

›tu52
1

r
›xp2au , (43)

›ty52
1

r
›yp2ay , (44)

05B2
1

r
›zp , (45)

›tB52N2w1Q, and (46)

›xu1 ›yy1 ›zw5 0, (47)

where B is the buoyancy (m s22), p is the perturbation

pressure (Pa), andQ is the buoyancy source (ms23). These

equations can be combined to give a self-contained

equation for B:

›2t ›
2
zB1a›t›

2
zB1N2=2B5 ›t›

2
zQ1a›2zQ . (48)

For consistency with the one-dimensional shallow-

water equations studied in the previous sections,

let us drop the y dimension (or, equivalently, con-

sider solutions that are invariant in the y direction).

Then, one-dimensional transient waves in an inviscid

fluid obey

›2t ›
2
zB1N2›2xB5 0.

For buoyancy patterns with a vertical wavenumber m,

that is,B(x, z, t)5B(x, t) sin(mz), this is a wave equation

with phase speedN/m. Therefore, the transient time scale

for these buoyancy patterns is

t5
L1m

N
(transient timescale) . (49)

Next, consider a steady state, which reduces Eq. (48) to

N2›2xB5a›2zQ . (50)

For a heating of wavenumber m with compensating re-

gions as depicted in Fig. 1, Q takes the form

Q(x,z)5

�
11

L1

L2

�
Q0 sin(mz)H(L12x)H(L11x)

2
L1

L2

Q0 sin(mz)H(L11L22x)H(L11L21x).

Substituting this forcing into Eq. (50) along with the test

solution B(x, z) 5 B(x) sin(mz), we find

B(x)5

8>>>>>>><
>>>>>>>:

aQ0m
2

2N2
[L1(L11L2)2x2] jxj#L1

aQ0L1m
2

2N2L2

(L11L22 jxj)2 L1, jxj,L11L2

0 L11L2# jxj

.

(51)

This solution forB(x) is the same as the solution for h(x)

in Eq. (7) with c replaced by N/m. In the column, the

mean buoyancy anomaly is

1

2L1

ðL
1

2L
1

dxB(x)5
am2

N2
L2
1

�
1

3
1

1

2

L2

L1

�
Q0 . (52)

Therefore, we see that the time scale relating the forcing

Q0 to the steady-state anomaly is
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t5
am2L2

1

N2

�
1

3
1

1

2

L2

L1

�
(steady-state timescale) .

(53)

Not surprisingly, this is the same time scale as in Eq. (9)

with c replaced by N/m.

By analogy to the new WPG scheme given in Table 1

for the shallow-water equations, the Boussinesq fluid

coupled to the new WPG scheme is described by

›tB52N2w1Q , (54)

›zp5 rB , (55)

›zw52d , (56)

›td
05

1

r

p

L2
1

2a*d0, and (57)

d5 d0 1
2pL1

HN
›td

0, (58)

with a* 5 a(1/3 1 L2/2L1). Here, B plays a role analo-

gous to that of h in the shallow-water equations. Equa-

tions (55) and (56) have no analog in the shallow-water

equations but are present here because the Boussinesq

system is a continuously stratified fluid. Note that Eqs.

(57) and (58) are the same as the new WPG equations

listed in Table 1, but with gh replaced by p and c re-

placed by NH/p, which is the wave speed of the first

baroclinic mode. These equations can be combined to

give a self-contained equation for B:

›2t ›
2
zB1a*›t›

2
zB2

2pN

HL1

›tB2
N2

L2
1

B5 ›t›
2
zQ1a*›2zQ .

(59)

For inviscid transients of the formB(z, t)5B0 exp(ivt1
imz), we get

m2v22 (2pN/HL1)iv2 (N/L1)
25 0. (60)

If m 5 p/H, then

v5
HN

pL1

i ,

and B decays with the time scale L1p/HN. This is the

correct behavior for the first baroclinic mode. In steady

state withQ5Q0 sin(mz), theWPG equations reduces to

B5
a*m2L2

N2
Q0 . (61)

For our choice of a*, this gives the correct relationship

between B and Q.

At first glance, one might be concerned by the pres-

ence of the dry first baroclinic wave speed in Eq. (58)

because moist convection coupled to dry dynamics can

generate waves that move at speeds different from the

dry gravity wave phase speed. However, this occurs by

a superposition of damped, dry, gravity waves, all of

which travel at their respective dry phase speeds. To

state this in another way, the large-scale gravity wave

dynamics are always dictated by a linear set of equations,

regardless of the heat source. No matter how nonlinear

the interactions between the convective heat source and

the gravity waves, the coupled convection–wave dynamics

are simply given by the dry, large-scale dynamics coupled

to a heat source. The purpose of any supradomain-scale

parameterization is to parameterize these large-scale dry

dynamics, so the use of the dry gravity wave speed is

correct here, and in fact, not unique to WPG. Prior im-

plementations of WTG also use the dry, first baroclinic

wave speed to set the relaxation time scale for the tem-

perature profile t (Raymond and Zeng 2005; Sessions

et al. 2010; Wang and Sobel 2011; Daleu et al. 2012).

For a fully compressible atmosphere, such as that

simulated by a cloud-resolving model, WPG is imple-

mented by the addition of a mass source 2rd as de-

scribed by Romps (2012b). In the newWPG scheme, the

divergence d is governed by

›td
0(z, t)5

p(z, t)2 p0(z)

r(z, t)L2
1

2a*d0(z, t) and (62)

d(z, t)5 d0(z, t)1
2pL1

HN
›td

0(z, t) , (63)

with a* 5 a(1/3 1 L2/2L1). This pair of equations re-

places Eq. (A1) in the appendix of Romps (2012a).

Otherwise, the implementation of this new WPG

scheme is identical to that described there and in

Romps (2012a).

7. Discussion

This new WPG scheme is motivated by the obser-

vation that gravity waves can exert a back reaction

on a column of fluid as they exit that column, as illus-

trated by the change in sign of the dashed curve in

Fig. 3. By adding a term to the governing equation for

the large-scale divergence, this behavior can be captured.

The resulting formulation of WPG can simultaneously

capture the time scale of gravity wave transients (i.e.,

the time it takes for gravity waves to remove transient

pressure anomalies from the column) and the time scale

for steady-state solutions (i.e., the time that relates the

steady-state buoyancy source to the steady-state buoyancy

anomaly). As pointed out by Romps (2012b), neither

WTG nor the original WPG are able to do this.
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One problem that remains, at least superficially, is

the inability of this new WPG to simultaneously cap-

ture the correct time scales for more than one transient

baroclinic mode. In Eq. (58) for WPG in a Boussinesq

fluid, the coefficient of the last term contains p/H, which

is the vertical wavenumber of the first baroclinic mode.

As a consequence, the dispersion relation [Eq. (60)] only

gives the correct time scale for transient modes with this

wavenumber; higher wavenumbers are damped too

quickly. Fortunately, the key to overcoming this problem

is straightforward in the new WPG. Following a spectral

decomposition approach akin to suggestions by Bergman

and Sardeshmukh (2004) andMapes (2004) and choosing

a basis for the baroclinic modes, denoted by ck(z), we can

write p, d, and d0 as

p(z, t)5 �
k

pk(t)ck(z) , (64)

d(z, t)5 �
k

dk(t)ck(z), and (65)

d0(z, t)5 �
k

d0k(t)ck(z) . (66)

Equations (57) and (58) can then be modified to

›td
0
k 5

1

r

pk
L2
1

2a*d0k and (67)

dk 5 d0k 1
2L1

N
mk›td

0
k , (68)

wheremk5 kp/H. This differs fromEqs. (57) and (58) in

that the coefficient in Eq. (68) now contains the vertical

wavenumber mk, which results in a mode-specific phase

speed N/mk. In a practical implementation, this simply

requires decomposing p into modes at each time step

(truncating at some sufficiently high-wavenumber n)

and integrating n prognostic equations for the n differ-

ent d0k. An analogous decomposition can be made for

a compressible fluid.
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APPENDIX

Inviscid Shallow-Water Solution with a Top-Hat
Oscillating Source

A top-hat mass source that oscillates with angular fre-

quency v in a column from x1 to x2 may be written as

Q(x, t; x1, x2)5Q0 cos(vt)H(x22 x)H(x2 x1) .

The fundamental solution to the inviscid shallow-water

equations from Eq. (4) then becomes

h(x, t; x1, x2)5
Q0

2

ðt
2‘

dt0 cos(vt0)(Hfx22 [x1 c(t2 t0)]gHf[x1 c(t2 t0)]2 x1g
1Hfx2 2 [x2 c(t2 t0)]gHf[x2 c(t2 t0)]2 x1g) . (A1)

We can rewrite the integrand using the identityH(ct0 2 a)H(b2 ct0)5H(ct0 2 a)2H(ct0 2 b), which holds provided

that a , b. In this case, a is always less than b since x2 . x1. Rewriting Eq. (A1) with this identity, we obtain

h(x, t; x1, x2)5
Q0

2

ðt
2‘

dt0 cos(vt0)fH[ct0 2 (2x2 1 x1 ct)]2H[ct02 (2x11 x1 ct)]

1H[ct0 2 (x12 x1 ct)]2H[ct02 (x22 x1 ct)]g . (A2)

This can be broken up into four integrals, with different lower bounds imposed by the step functions:

h(x, t; x1, x2)5
Q0

2

(ðt
t1(x2x

2
)/c

dt0 cos(vt0)H[ct0 2 (ct1 x2 x2)]2

ðt
t1(x2x

1
)/c

dt0 cos(vt0)H[ct02 (ct1 x2 x1)]

1

ðt
t1(x

1
2x)/c

dt0 cos(vt0)H[ct02 (ct1 x12 x)]2

ðt
t1(x

2
2x)/c

dt0 cos(vt0)H[ct0 2 (ct1 x22 x)]

)
.

(A3)

Evaluating the integrals leads to the following solution for h(x, t):
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h(x, t; x1, x2)5
Q0

2v
(H(x22 x)fsin(vt)2 sin[vt1v(x2 x2)/c]g2H(x2 x2)fsin(vt)2 sin[vt1v(x22 x)/c]g

2H(x12 x)fsin(vt)2 sin[vt1v(x2 x1)/c]g1H(x2 x1)fsin(vt)2 sin[vt1v(x12 x)/c]g) , (A4)

which can be written as

h(x, t; x1, x2)5
Q0

2v
fsign(x22 x)[sin(vt)2 sin(vt2vjx22 xj/c)]1 sign(x2 x1)[sin(vt)2 sin(vt2vjx2 x1j/c)]g .

(A5)

For an oscillating source of the form in Eq. (24), the

solution becomes

h(x, t)5

�
11

L1

L2

�
h(x, t; 2L1,L1)

2
L1

L2

h(x, t; 2L12L2,L11L2) . (A6)

The average of this function over the column is

h(t)[
1

2L1

ðL
1

2L
1

dx0h(x0, t) (A7)

5
Q0

v
sin(vt)1

Q0c

v22L1

�
11

L1

L2

��
cos(vt)

2 cos

�
vt2v

2L1

c

��
(A8)

2
Q0c

v22L1

L1

L2

�
cos

�
vt2v

L2

c

�
2cos

�
vt2v

2L11L2

c

��
.

(A9)

Written as h(t)5 h0 cos(vt1f), the amplitude h0 of this

oscillation is given by Eq. (25).
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