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ABSTRACT

A weak pressure gradient (WPG) approximation is introduced for parameterizing supradomain-scale

(SDS) dynamics, and this method is compared to the relaxed form of the weak temperature gradient (WTG)

approximation in the context of 3D, linearized, damped, Boussinesq equations. It is found that neither

method is able to capture the two different time scales present in the full 3D equations. Nevertheless, WPG is

argued to have several advantages over WTG. First, WPG correctly predicts the magnitude of the steady-state

buoyancy anomalies generated by an applied heating, but WTG underestimates these buoyancy anomalies. It

is conjectured that this underestimation may short-circuit the natural feedbacks between convective mass

fluxes and local temperature anomalies. Second, WPG correctly predicts the adiabatic lifting of air below an

initial buoyancy perturbation; WTG is unable to capture this nonlocal effect. It is hypothesized that this may

be relevant to moist convection, where adiabatic lifting can reduce convective inhibition. Third, WPG agrees

with the full 3D equations on the counterintuitive fact that an isolated heating applied to a column of

Boussinesq fluid leads to a steady ascent with zero column-integrated buoyancy. This falsifies the premise of

the relaxed form of WTG, which assumes that vertical velocity is proportional to buoyancy.

1. Introduction

A wide range of scales contribute to the dynamics of

the atmosphere, from cloud eddies at tens of meters to

planetary-scale circulations at tens of thousands of ki-

lometers. It is impossible to capture all of these scales in

a single numerical simulation, so some range of scales

must be parameterized. The approach taken in general

circulation models (GCMs) is to resolve large-scale

circulations and parameterize small-scale convection.

The approach taken in cloud-resolving models (CRMs)

is to resolve small-scale convection and parameterize

large-scale circulations. The former is often referred to

as subgrid-scale (SGS) parameterization; we can refer to

the latter as supradomain-scale (SDS) parameterization.

In a CRM, the simplest way to parameterize the large

scale is to impose a profile of ascent or subsidence. The

downside of this approach is that it decouples the

large-scale vertical velocity from convection. An alter-

native is to parameterize the vertical velocity using the

weak temperature gradient (WTG; Sobel and Bretherton

2000) approximation. In the most common implemen-

tation of WTG, the vertical advection of virtual potential

temperature w›zuy is assumed to remove differences in

buoyancy Duy between the CRM and the larger envi-

ronment over a fixed time scale t (e.g., Raymond and

Zeng 2005; Raymond 2007; Sessions et al. 2010; Wang

and Sobel 2011, 2012). Therefore, the vertical velocity in

this relaxed form of WTG is specified as w 5 Duy/(t›zuy).

In practice, this formulation performs poorly at altitudes

where the static stability approaches zero, such as in the

dry boundary layer. The remedy commonly used for the

boundary layer is to linearly interpolate w from its pre-

dicted value above the boundary layer to zero at the

surface (e.g., Sobel and Bretherton 2000; Raymond and

Zeng 2005). The scheme also produces w values that are

often too large in the upper troposphere (e.g., Raymond

and Zeng 2005). This is combatted by replacing ›zuy with

max(g, ›zuy) for some constant g . 0, and by modulating

the resulting velocity by a factor that tapers to zero in

the upper troposphere (e.g., Raymond and Zeng 2005;

Sessions et al. 2010).

The ad hoc nature of these required fixes suggests that

WTG may not be capturing the relevant dynamics. This

is also suggested by the fact that the basic premise of
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the relaxed form of WTG—that the vertical velocity is

proportional to buoyancy with a fixed time scale—is

not derived from the governing equations. An alter-

native approach, which we refer to here as the weak

pressure gradient (WPG) approximation, is to derive

an expression for the vertical velocity directly from

the momentum equations (e.g., Holton 1973; Nilsson

and Emanuel 1999; Raymond and Zeng 2000; Shaevitz

and Sobel 2004; Kuang 2008; Caldwell and Bretherton

2009; Blossey et al. 2009; Kuang 2011). Although these

studies differ in the details of their implementation of

WPG (see Table 1), their common feature is a parame-

terization of the pressure gradient force between the

column and its environment. The direct effect of this

parameterized momentum equation is to produce weak

gradients of pressure.

The goal of this paper is to compare the accuracy of

WTG and WPG using analytical solutions to linearized

Boussinesq equations. Section 2 reviews the relevant

three-dimensional Boussinesq equations and presents

two analytical solutions to these 3D equations: a tran-

sient solution in which a buoyancy anomaly is carried

out of a column by gravity waves, and a steady solution

in which a heating applied to a column leads to steady-

state profiles of buoyancy and vertical motion. The two

different time scales inherent to these solutions will

be of particular interest. Section 3 introduces the WTG

approximation and derives the transient and steady-

state solutions analogous to the full 3D solutions. Sec-

tion 4 introduces the prognostic WPG approximation

and also derives the analogous transient and steady-

state solutions. Section 5 introduces the diagnostic WPG

approximation and its solutions. These four sets of

transient and steady solutions—in 3D, WTG, prog-

nostic WPG, and diagnostic WPG—are compared to

one another in section 6. This illuminates some de-

ficiencies of the WTG method that are remedied by the

WPG method. A brief summary is given in section 7.

Finally, the appendix describes a formulation of WPG

for cloud-resolving models, which is used by Romps

(2012) to follow up on the analytical results presented

here.

2. Full 3D equations

The linear, hydrostatic, Boussinesq equations in 3D

with Rayleigh drag are

›tu 5 2
1

r
›x p 2 au, (1a)

›ty 5 2
1

r
›y p 2 ay, (1b)

0 5 B 2
1

r
›z p, (1c)

›tB 5 2N2w 1 Q, (1d)

›xu 1 ›yy 1 ›zw 5 0. (1e)

Here, a hydrostatic background state has been sub-

tracted, so p is the pressure perturbation (Pa) and B is

the buoyancy (m s22). The other variables take their

usual meaning: a is the Rayleigh drag coefficient (s21),

r is the constant density (kg m23), N is the Brunt–

Väisälä frequency (s21), Q is the applied buoyancy

source or heating (m s23), and u, y, and w are the ve-

locities (m s21) in the x, y, and z directions, respectively.

The symbol ›t is a shorthand for the partial derivative

with respect to time, and similarly for subscripts x, y, and

z. These equations can be combined into a single equa-

tion for B:

›2
t ›2

zB 1 a›t›
2
zB 1 N2=2B 5 ›t›

2
zQ 1 a›2

zQ. (2)

Here, $ is the two-dimensional gradient operator.

We will focus on two prototypical solutions. The first

is an adiabatic (Q 5 0) transient solution in which we use

TABLE 1. Variations of WPG in the literature. In the first column, a ‘‘V’’ denotes that the momentum damping is given by an effective

viscosity and an ‘‘R’’ denotes a Rayleigh damping. The second column specifies whether or not the scheme uses a prognostic equation for

the divergence, and the third column specifies whether or not the Coriolis force is included.

Viscosity/Rayleigh/None Prognostic? Coriolis?

Holton (1973) V Y N

Nilsson and Emanuel (1999) V Y N

Raymond and Zeng (2000) R N N

Shaevitz and Sobel (2004) V, none above 800 mb Y N

Kuang (2008) R Y N

Caldwell and Bretherton (2009) None N Y

Blossey et al. (2009) R N Y

Kuang (2011) R N N
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a 5 0 for simplicity; setting a to zero in these solutions

is a reasonable approximation so long as 1/a is large

compared to the time scale l discussed below. This

transient solution will represent a buoyancy perturba-

tion initially confined to a motionless column of hori-

zontal scale L. Of particular interest will be the transient

time scale l that describes how long it takes the buoy-

ancy perturbation to propagate out of the column. We

can investigate this by studying the time dependence of

the solution at the center of the column (i.e., at r 5 0) or

by studying the average evolution of the solution within

some finite radius (i.e., r , L).

The second prototypical solution is a steady state in

which we use a . 0 and apply a steady heating (Q 6¼ 0) in

a column of horizontal scale L. In this case, we will be

particularly interested in the steady time scale s that

relates the magnitude of the buoyancy perturbations to

the heating. Again, since we are interested in the be-

havior of the column, we will want to study the solution

at r 5 0. For both solutions, we will assume a rigid free-

slip bottom and top at z 5 0 and z 5 H, respectively. The

free-slip condition is appropriate for a model of the free

troposphere, and the rigid boundaries (to be thought of

as representing the top of the boundary layer and the

tropopause) are a mathematical convenience.

Let us begin with the transient solution. When a and

Q are both zero, Eq. (2) simplifies to ›2
t ›2

zB 1 N2=2B 5 0.

This equation reveals that a buoyancy perturbation of

vertical wavenumber m and horizontal scale L has a

characteristic time scale of mL/N. We seek a solution to

this equation that is cylindrically symmetric and has a

buoyancy perturbation centered at the origin with a

horizontal scale L and amplitude B0. The simplest such

solution is

B 5
B0

2p

ð2p

0
df exp

�
2 r sinf 2

N

m
t

� �2

L2

�
sin(mz),

�
(3)

where r 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 1 y2

p
. This solution is shown at two dif-

ferent times in the top panels of Fig. 1. At r 5 0, this

buoyancy evolves as

Bjr50 5 B0 exp[2(t /l3D)2] sin(mz), (4)

where

l3D 5
mL

N
. (5)

This is the time scale over which the column’s buoyancy

perturbation decays to zero in the 3D transient case.

Next, let us construct the steady-state solution. When

a and Q are nonzero and there is no time dependence,

Eq. (2) reduces to =2B 5 (a/N2)›2
zQ. This equation re-

veals that a buoyancy perturbation of vertical wave-

number m and horizontal scale L has a magnitude

(m s22) that is related to the magnitude of the heating

(m s23) by the time scale al2
3D. We seek a solution to

this differential equation in which Q and B are cylin-

drically symmetric and centered on the origin with a

width L. The simplest such solution is

Q 5 Q0 1 2
r2

4L2

� �
exp 2

r2

4L2

� �
sin(mz),

B 5
am2L2

N2
Q0 exp 2

r2

4L2

� �
sin(mz),

where Q0 is a constant. At r 5 0, this solution can be

written as

Qjr50 5 Q0 sin(mz), (6)

Bjr50 5 s3DQjr50. (7)

We see, as expected, that B (m s22) and Q (m s22) are

related by a time scale of

s3D 5 al2
3D. (8)

This is the time scale that relates the magnitude of the

column’s buoyancy perturbations to the magnitude of

the applied heating.

These three-dimensional solutions provide a bench-

mark against which the WTG and WPG approximations

can be evaluated. Since WTG and WPG are designed to

parameterize the dynamical interaction between a dis-

turbed column of fluid and its quiescent environment,

they should be able to reproduce the behavior of these

solutions at r 5 0. In particular, we have derived two

different time scales—l3D for transients and s3D for

steady states—that WTG and WPG should be able to

replicate.

3. WTG approximation

The weak-temperature-gradient approximation re-

duces the full 3D equations to a set of 1D equations in

which the dynamical interaction between the column

and its environment is parameterized. WTG accom-

plishes this by parameterizing the vertical advection

term in the thermodynamic equation. In this paper, we

focus on the relaxed form of WTG introduced by

Raymond and Zeng (2005). The assumption therein is

that vertical motion consumes buoyancy perturbations

with some constant time scale t (i.e., wN2 5 B/t). In the

limit of t 5 0, this reduces to the strict WTG introduced
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by Sobel and Bretherton (2000). In the Boussinesq sys-

tem, these WTG equations are described by

0 5 B 2
1

r
›zp, (9a)

›tB 5 2N2w 1 Q, (9b)

w 5
B

tN2
. (9c)

The differential equation for B becomes

›tB 5 2
B

t
1 Q, (10)

where t is a constant that must be chosen a priori. Note

that this equation is qualitatively different from Eq. (2),

which was derived from the three-dimensional equations.

In the full 3D system, Eq. (2) contains two constants,

1/a and 1/N, which allow its solutions to exhibit two

distinct time scales l3D and s3D. In WTG, Eq. (10) con-

tains only one constant, t. This means that it is not possible

to simultaneously represent transient and steady-state

behavior faithfully with WTG unless, by coincidence,

the two time scales are the same. Instead, the value of

t must be chosen based on whether the accuracy of

transients or steady states is more important.

WTG admits solutions that are analogous to the so-

lutions in the previous section. By choosing

FIG. 1. (top) Values of B/B0 from Eq. (3) plotted on the x–y plane at z 5 p/2m for two times: (left) t 5 0 and (right)

t 5 8mL/N. The white circle denotes the column within r 5 L. (bottom) The temporal evolution of the buoyancy at

r 5 0 and z 5 p/2m for the 3D solution (solid) and the WTG and WPG solutions (dashed) for two values of m: (left)

m 5 p/H and (right) m 5 10p/H.
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t 5
pL

NH
, (11)

a transient solution in the absence of heating is B 5

B0 exp(2t/lWTG) sin(mz), which decays to zero with a

time scale of

lWTG 5 t 5
p

mH
l3D. (12)

This matches the 3D transient time scale l3D if m 5 p/H.

In other words, this gives the correct transient time scale

for the first baroclinic mode. For higher baroclinic

modes (i.e., m . p/H), transient perturbations are over-

damped: they decay with a time scale that is too short by

a factor of p/mH.

Equation (11) is not the correct choice for steady-state

solutions. Instead, we must choose

t 5
p2aL2

N2H2
, (13)

in which case the steady-state solution to Q 5 Q0 sin(mz)

is B 5 sWTGQ with a time scale of

sWTG 5 t 5 s3D

p

mH

� 	2
. (14)

This matches the 3D steady time scale s3D if m 5 p/H.

For m . p/H, the WTG time scale will be too small by

a factor of (p/mH)2. This implies that the magnitude of

the buoyancy will be too small by this factor.

4. WPG approximation: Prognostic scheme

In the weak pressure gradient approximation, we re-

duce the full 3D equations to a set of 1D equations by

parameterizing the horizontal Laplacian of the pressure.

Beginning with the full 3D Eqs. (1a)–(1e), we add ›x of

Eq. (1a) and ›y of Eq. (1b) to get ›td 5 2(1/r)=2p 2 a*d,

where d [ ›xu 1 ›yy is the horizontal divergence. Here,

we have denoted the damping rate by a* since it is a free

parameter that we may or may not want to set equal to

the Rayleigh damping rate. We now assume that the

column being modeled has a constant horizontal scale

and is embedded in an environment with zero pertur-

bation pressure, in which case we can approximate =2p

as 2p/L2. This gives the WPG equations:

›td 5
1

r

p

L2
2 a*d, (15a)

0 5 B 2
1

r
›zp, (15b)

›tB 5 2N2w 1 Q, (15c)

d 1 ›zw 5 0. (15d)

These can be reduced to a single equation in B:

›2
t ›2

zB 1 a*›t›
2
zB 2

N2

L2
B 5 ›t›

2
zQ 1 a*›2

zQ. (16)

Note the similarity between Eqs. (16) and (2).

When Q 5 a* 5 0, the differential equation becomes

›2
t ›2

zB 2 (N2/L2)B 5 0. We might hope that this equa-

tion would have Eq. (4) as a solution, but it does not.

Instead, the solutions to this equation are of the form

exp(ivt 2 imz) with v 5 6N/mL. In other words, the

solutions correspond to a column immersed in an infinite

bath of plane waves, which is not what we want.

We will now solve for the transient solution while

keeping a* nonzero. When Q 5 0, the plane wave

exp(ivt 2 imz) is a solution to Eq. (16) so long as v

satisfies a dispersion relation:

v 5 i(a*/2) 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(a*/2)2

1 N2 /(m2L2)

q
.

If we set a* equal to the true value of a, and if a�N/mL

(i.e., if gravity waves propagate out of the column much

faster than they are damped), then the solution still os-

cillates with a time scale of about mL/N. The solution is

damped, but on a time scale of 2/a, which is much longer

than l3D 5 mL/N.

To generate damping on a time scale comparable to

mL/N, we can co-opt a* to represent the time scale with

which waves propagate out of the column. Of course, we

only have the latitude to pick a single value for the

constant a*, so we must pick a value of a* that gives the

correct time scale for the mode of most interest. For our

purposes, we will pick

a* 5
2HN

pL
(17)

so that the first baroclinic mode (which has m 5 p/H)

will decay with the correct time scale. With this choice

for a*, modes of general m will decay as a sum of two

exponentials with time scales

l6 5 l3DF6(mH /p),

where

F6(x) 5
1

x

2
41 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2

1

x

� �2
s 3

5
21

.
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This function gives the ratio of l1 and l2 to the correct

time scale for m. Note that F6(1) 5 1. For integer x . 1,

a good approximation to F6(x) is (2x)71. In other words,

F6(x) ’
1 x 5 1

(2x)71 x . 1
.




For example, F1(2) 5 0.27 and F2(2) 5 3.7, so the

second baroclinic mode decays as a sum of two expo-

nentials with time scales that are roughly 4 times too

short and 4 times too long.

For a buoyancy anomaly with mH/p . 1 that is ini-

tially stationary, the requirement that ›tB 5 0 at t 5

0 gives the relative magnitudes of the two exponentials.

The magnitude of the slow exponential is larger than the

magnitude of the fast exponential by a factor of ap-

proximately F2/F1 ’ (2mH/p)2. Already at the second

baroclinic mode (i.e., m 5 2p/H), this factor is 16, so the

slow mode dominates. This means that the transient

solution in prognostic WPG can be approximated by an

exponential decay with a time scale of

lWPG, prog 5 l3DF2(mH/p) ’

l3D m 5 p/H

l3D

2mH

p
m . p/H

.

8<
:

(18)

For m . p/H, this gives a decay of buoyancy transients

that is too slow by a factor of 2mH/p.

As in WTG, where t must be chosen depending on

whether transient or steady-state behavior is of interest,

there is not, in general, one value of a* that works for both

transient and steady-state solutions in WPG. The steady-

state solutions in WPG obey B 52(a*L2/N2)›2
zQ. By

setting a* equal to the Rayleigh drag coefficient,

a* 5 a, (19)

we recover the same equation as in the 3D case. For a

sinusoidal Q of vertical wavenumber m, the steady-state

solution is B 5 sWPG,progQ with a time scale of

sWPG, prog 5 s3D. (20)

5. WPG approximation: Diagnostic scheme

In the diagnostic WPG method, we simplify Eq. (15a)

from the prognostic scheme by setting ›td to zero. This

assumes that the dominant balance is between the

pressure-gradient force and the Rayleigh drag. This

gives

0 5
1

r

p

L2
2 a*d, (21a)

0 5 B 2
1

r
›zp, (21b)

›tB 5 2N2w 1 Q, (21c)

d 1 ›zw 5 0. (21d)

This can be reduced to a single equation in B:

›t›
2
zB 2

N2

a*L2
B 5 ›2

zQ. (22)

When Q 5 0, the expression exp(ivt 2 imz) is a so-

lution for B in Eq. (22) so long as v 5 iN2/(a*m2L2).

This is a damped solution with a damping time scale of

a*m2L2/N2. As in the previous section, we will tune a*

so that the first baroclinic mode decays with the appro-

priate time scale. In particular, we set

a* 5 NH/pL. (23)

With this choice, transient B anomalies decay expo-

nentially with a time scale of

lWPG, diag 5 l3D

mH

p
, (24)

which we see is equal to l3D for the first baroclinic mode

(i.e., m 5 p/H), but is too long by a factor of mH/p for

modes with m . p/H. As with prognostic WPG, higher

baroclinic modes are underdamped.

The steady-state solution is exactly the same as in

prognostic WPG. Choosing

a* 5 a, (25)

B is related to a sinusoidal Q of vertical wavenumber m

by B 5 sWPG,diagQ with

sWPG, diag 5 s3D. (26)

6. WPG versus WTG

The previous sections have shown that neither WTG

nor WPG is able to replicate all of the time scales present

in the three-dimensional solutions. Instead a parameter

(t for WTG, a* for WPG) must be chosen based on

whether transient or steady-state behavior is more rele-

vant to the simulation at hand. Although both WTG and

WPG suffer from this inadequacy, there are compelling

reasons to think that WPG is the more accurate of the
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two schemes. We now compare WTG and WPG across

several criteria.

a. Time scale for decay of transients

For transient solutions, which correspond to the re-

moval of buoyancy perturbations out of a column by

gravity waves, both WTG and WPG are able to generate

the correct time scale for first baroclinic modes (i.e., m 5

p/H). But, for buoyancy perturbations with m . p/H,

WTG damps the perturbations too quickly by a factor of

mH/p, and both forms of WPG damp the perturbations

too slowly by a similar factor (2mH/p for prognostic

WPG, mH/p for diagnostic WPG). The top rows of

Table 2 summarize these transient time scales.

This behavior can be illustrated with the 3D solution

given by Eq. (3). The top row of Fig. 1 gives plan views of

B/B0 from this solution at z 5 p/2m and two different

times, t 5 0 and t 5 8mL/N. The white circles outline

a column of radius L. The solid curve in the bottom-left

panel of Fig. 1 plots B/B0 at r 5 0 as a function of time; as

expected, the buoyancy in the column decays on a time

scale of mL/N. For the first baroclinic mode (i.e., m 5

p/H), WTG, prognostic WPG, and diagnostic WPG all

predict an exponential decay on that time scale, which is

plotted as the dashed line. The bottom-right panel shows

the decay of buoyancy for a highly baroclinic mode

of m 5 10p/H. Again, the buoyancy in 3D decays on a

time scale of mL/N. The WTG solution, however, de-

cays 10 times too quickly. The solution in prognostic

WPG decays 20 times too slowly, while the solution in

diagnostic WPG decays 10 times too slowly. Therefore,

it is not obvious from the time scales alone that WPG

would be any better at modeling transients than WTG,

but other considerations, discussed below, do give such

an indication.

b. Magnitude of steady-state buoyancy

As we have seen in the previous sections, a constant

sinusoidal Q leads to a constant sinusoidal B whose

magnitude is related to that of Q by a time scale s. These

time scales are summarized in the bottom rows of Table 2.

When Q is first baroclinic (i.e., m 5 p/H), WTG and

WPG both predict the correct magnitude of B. For si-

nusoidal Q with m . p/H, both prognostic and diag-

nostic WPG continue to predict the correct magnitude

for B, but WTG predicts a buoyancy that is too small by

a factor of (p/mH)2.

This underestimation by WTG of the buoyancy may

lead to errors when WTG is used in a cloud-resolving

model with moist convection. To see why, let us consider

an atmosphere with a Rayleigh damping time scale of

1/a 5 1 day and a second-baroclinic convective heating

corresponding to a rain rate of 1 mm day21 over a

horizontal length scale of 4000 km. This heating is

comparable to the magnitude (see Fig. 6 of Lin et al.

2004) and width (e.g., Fig. 7b of Zhang 2005) of the

stratiform convective heating at the peak of the MJO

cycle. Using m 5 2p/(15 km) and N 5 0.01 s21, Eq. (8)

from the full three-dimensional theory gives s3D 5 4

days. A precipitation rate of 1 mm day21 corresponds

to a local heating rate of at least a few tenths of Kelvin

per day. Therefore, by relation B 5 s3DQ from Eq.

(7), this heating should generate a steady, positive,

virtual temperature anomaly of at least 1 K. This

matches well the magnitude of the upper-tropospheric

temperature anomaly during the active phase of the

MJO (Fig. 7b of Zhang 2005), although rotational ef-

fects are also likely responsible for much of the ob-

served structure.

Since a virtual temperature anomaly of 1 K is com-

parable to the virtual temperature excess of tropical

convection, this temperature anomaly may significantly

reduce cloud buoyancies, thereby keeping convective

mass fluxes in check. WTG, however, underestimates this

effect. WTG produces a second-baroclinic buoyancy

anomaly that is too small by a factor of 4, so convective

mass fluxes are insufficiently throttled. This may con-

tribute to convective mass fluxes in WTG that are too

top-heavy.

c. Shape of the buoyancy

In 3D, steady-state B and Q are related by

=2B 5
a

N2
›2

zQ.

In WPG, B and Q are related by

TABLE 2. The time scales for transient and steady solutions in the

linear Boussinesq equations in 3D or as modeled using WTG,

prognostic WPG, or diagnostic WPG.

Simulation Parameter Time scale

Transient 3D None l 5
mL

N

WTG t 5
pL

NH
l 5

mL

N

p

mH

WPG prog a* 5
2NH

pL
l 5

mL

N
F2(mH/p)

WPG diag a* 5
NH

pL
l 5

mL

N

mH

p

Steady 3D None s 5 a
mL

N

� �
2

WTG t 5 a
pL

NH

� �
2

s 5 a
mL

N

� �
2 p

mH

� 	2

WPG prog a* 5 a s 5 a
mL

N

� �
2

WPG diag a* 5 a s 5 a
mL

N

� �
2
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B 5 2
aL2

N2
›2

zQ. (27)

In both equations, B ;2›2
zQ, which tends to collocate

a peak in B with the peak in Q, but also gives opposite

values of B below and above the peak in Q. For example,

a patch of positive heating will lead to positive buoyancy

at the center of the heating, but negative buoyancy just

below and above the heating. This corresponds to the

adiabatic cooling of air that is drawn up into, and later

up out of, the region of maximum heating by continuity.

On the other hand, WTG specifies B as proportional to

Q instead of ›2
zQ, which can lead to a qualitatively er-

roneous buoyancy profile.

Take, for example, the following 3D heating distri-

bution:

Q 5 Q0 1 2
r2

4L2

� �
exp

"
2

r2

4L2
2

(z 2 H/2)2

2s2
z

#
. (28)

The full, 3D, steady-state solution to this heating is

B 5
a

N2

L2

s4
z

[s2
z 2(z2H/2)2]Q0 exp

"
2

r2

4L2
2

(z2H/2)2

2s2
z

#
.

(29)

This solution is shown in the top two rows of Fig. 2.

When the Q distribution in Eq. (28) is restricted to r 5 0

and plugged into the WPG equations, the solution we get

is Eq. (29) evaluated at r 5 0. The WTG solution, how-

ever, is

B 5
p2aL2

N2H2
Q.

The 3D solution at r 5 0, the WPG solution, and the

WTG solution are shown in the bottom row of Fig. 2.

Despite the fact that all three cases agree on the vertical

velocity in response to a steady external heating [they all

predict w 5 Q/N2, as seen from Eqs. (1d), (9b), (15c),

and (21c)], only WPG matches the buoyancy profile

found in the 3D solution. In WTG, the buoyancy profile

has the wrong shape and a magnitude that is far too

small. When moist convection is present, it is possible

that these errors in the WTG buoyancy profile could

feed back on the convective heating and significantly

alter the steady-state solution.

Upon integrating Eq. (27) in height, we see that a

steady-state column with an isolated heating has net as-

cent (i.e., w 5 Q/N2) but no net buoyancy. This falsifies

the underlying premise of the relaxed form of WTG,

which is that large-scale vertical velocity is directly pro-

portional to buoyancy. The fact that there can be no net

buoyancy in a steadily ascending column is counterintu-

itive. To check the energetics, note that the work done by

such a column is

ðH

0
dz wB 5 2

ðH

0
dz

aL2

N4
Q›2

zQ

5
aL2

N4

ðH

0
dz(›zQ)2

$ 0.

Therefore, even with zero net buoyancy, a heated col-

umn can do work against the Rayleigh drag.

d. Nonlocal buoyancy effects

It is tempting to look at Eq. (2) and conclude that B

remains zero in regions where B and Q are zero. But,

this would be a false inference: the differential equation

for B only tells us about the time derivatives of ›2
zB, so it

does not preclude nonzero time derivatives of ›zB. To

see that ›t›zB can be nonzero even where B and Q are

zero, we must return to Eqs. (1a)–(1e).

If we add ›x of Eq. (1a) and ›y of Eq. (1b), use con-

tinuity to replace ›xu 1 ›yy with ›zw, integrate over z,

and use the fact that w is zero at z 5 0 and z 5 H, we

find that

ðH

0
dz p 5 0. (30)

FIG. 2. (top),(middle) The three-dimensional solution given by

Eqs. (28) and (29) with H 5 10 and Q0 5 L 5 sz 5 N 5 m 5 a 5 1.

(bottom) The profiles of Q (black) and B (red) from (left) the 3D

solution at r 5 0, and the buoyancy generated by (middle) WPG

and (right) WTG in response to the same heating profile.
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Integrating Eq. (1c) in z and using Eq. (30) to find the

integration constant, we find that

p 5 r

ðz

0
dz9B 2 r

1

H

ðH

0
dz9

ðz9

0
dz0B, (31)

which tells us how the pressure responds to nonlocal

buoyancy perturbations. This same derivation applies to

the WPG equations as well.

Now, imagine that B is initially positive between

heights z1 and z2 and zero everywhere else. Equation

(31) tells us that p is negative below z1, which will drive

convergence below z1, which will lead to ascent below

z1, which will lead to negative buoyancy everywhere

below z1. In this way, a localized heating produces local

buoyancy perturbations, which then produce nonlocal

buoyancy perturbations. This nonlocal effect is dutifully

captured by the WPG equations. In fact, the expression

for ›t›zB can be derived from diagnostic WPG by taking

›z of Eq. (21c), using Eq. (21d) to replace ›zw, using

Eq. (21a) to replace d, and then replacing p with Eq. (31).

This gives

›t›zB 5
N2

a*L2

ðz

0
dz9B 2

1

H

ðH

0
dz9

ðz9

0
dz0B

� �
,

which clearly shows that ›zB initially becomes negative

everywhere below a positive buoyancy anomaly. We can

conjecture that this effect may be important for moist

convection: a buoyancy perturbation aloft can lead to

lifting of the convective inhibition layer which can, in

turn, trigger additional convection and additional latent

heating. These nonlocal effects are not present in the

WTG approximation.

7. Conclusions

This paper examines the theoretical underpinnings of

methods used for parameterizing the large-scale dynam-

ics of an atmospheric column embedded in a quiescent

environment. The investigation here uses a simplified

set of governing equations—the linearized, Rayleigh-

damped, Boussinesq equations—that allow for analyt-

ical solutions. Beginning with 3D solutions, which serve

as benchmarks, we have derived the two time scales

relevant to the transient and steady-state solutions for

a perturbed column. In the transient case, where a col-

umn is initialized with a buoyancy perturbation, the

relevant time scale l is found to be the time it takes for

gravity waves to propagate out of the column. In a steady

state, where a column is continuously forced with an ap-

plied heating, the time scale s that relates the buoyancy

perturbation to the heating source is found to be al2,

where a is the Rayleigh damping rate.

We have analyzed three parameterizations of the

dynamical interaction between a column and its envi-

ronment: a weak temperature gradient (WTG) approxi-

mation, a prognostic weak pressure gradient (WPG)

approximation, and a diagnostic WPG approximation.

It is found that these schemes cannot simultaneously

replicate the correct transient and steady-state time scales.

Instead, the parameter in each scheme (t for WTG, a*

for WPG) must be chosen based on whether the tran-

sient behavior or steady-state behavior is of greater in-

terest. If the parameters are chosen to capture transient

behavior, higher-order vertical modes travel out of the

column too quickly in WTG and too slowly in WPG. If

the parameters are chosen to capture steady-state be-

havior, WPG correctly predicts the profile of buoyancy at

all vertical scales, but WTG predicts buoyancies for

higher-order vertical modes that are much too weak. It

is conjectured that the buoyancy anomaly associated

with upper-tropospheric stratiform heating acts to re-

duce deep convection. By underestimating this buoy-

ancy anomaly, WTG generates too weak a convective

throttle and, thereby, may overproduce deep convection.

Therefore, it is expected that WPG, in both its prognostic

and diagnostic form, will outperform WTG in application

to steady-state cloud-resolving simulations.

Several other considerations suggest that WPG may

be a more accurate scheme than WTG. First, WPG can

be derived from the governing equations by replacing

the Laplacian of pressure by a finite-difference approxi-

mation. WTG, on the other hand, cannot be so easily

derived; instead, it relies on the premise that buoyancy

perturbations are eliminated by large-scale dynamics

on a fixed time scale (finite for the relaxed form of WTG,

zero for strict WTG). Second, the 3D equations show that

a vertically isolated heating causes a column to ascend

even though the column maintains zero net buoyancy.

This behavior is perfectly captured by WPG but cannot

be captured by WTG, which requires negatively buoyant

air to sink. Third, the 3D equations predict adiabatic

lifting of air underneath an initial positive buoyancy

anomaly. The WPG equations correctly capture this be-

havior, but the WTG equations cannot because they

require that neutrally buoyant air have zero vertical

velocity. It is conjectured that this nonlocal effect of

buoyancy may be important for the adiabatic lifting of

convective inhibition layers. These implications are fur-

ther evaluated by Romps (2012) using cloud-resolving

simulations.
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APPENDIX

Compressible WPG

The extension of prognostic WPG to a compressible

atmosphere is straightforward. In a cloud-resolving model

(CRM) that solves fully compressible equations, the con-

tinuity equation can be supplemented with a mass source

2rd, where d(z, t) is evolved according to the following

prognostic equation:

›td(z, t) 5
p(z, t) 2 p0(z)

r(z, t)L2
2 a*(z) d(z, t). (A1)

Here, the dependence of variables on height and time

has been made explicit. The variables r and p are the

horizontally averaged profiles of density and pressure,

respectively, in the CRM. The profile p0 is the reference

pressure of the environment in which we imagine the

CRM to be immersed. The length scale L is the char-

acteristic length over which we imagine atmospheric

conditions transition from those represented by the cloud-

resolving model to those in the reference environment.

Note that L can be different from the size of the CRM

domain. The coefficient a* can be a function of height

in general; like L, it is an input parameter to the WPG

method. The diagnostic version of WPG in a fully com-

pressible CRM is simply

d(z, t) 5
p(z, t) 2 p0(z)

a*(z)r(z, t)L2
. (A2)

For an anelastic model, we must make some approx-

imations to be consistent with the anelastic framework.

Let r̂(z) be the density profile used by the CRM’s

continuity equation [i.e., $ � (r̂u) 5 0]. Using r̂ for the

density except where it multiplies g, the anelastic WPG

equations are

›td(z, t) 5
p(z, t) 2 p0(z)

r̂(z)L2
2 a*(z)d(z, t), (A3)

›zp(z, t) 5 2r(z, t)g, (A4)

›z[r̂(z)w(z, t)] 1 r̂(z)d(z, t) 5 0. (A5)

Here, r includes all temperature and virtual effects [i.e.,

r 5 r̂(1 1 B/g), where B is the local buoyancy].

We are not yet done because we need to use boundary

conditions to complete the definition of p(z, t). Using

Eq. (A5) to replace the d on the left-hand side of Eq.

(A3) gives

2›t›z(r̂w) 5
p 2 p0

L2
2 r̂a*d.

Integrating in height from the surface (z 5 0) to the

model top (z 5 H) and using the fact that w 5 0 at z 5

0 and z 5 H, we get

ðH

0
dz( p 2 p0) 5 L2

ðH

0
dz r̂a*d.

Adding ›zp0 5 2r0g (where p0 and r0 are the WPG

reference pressure and density, which are in hydrostatic

balance by assumption) to Eq. (A4) and integrating in

height from 0 to z gives

p 2 p0 5 2

ðz

0
dz9(r 2 r0)g 1 C,

where C is an integration constant. Integrating this

equation over height from 0 to H, we can identify C with

the help of the previous equation. This gives

p 2 p0 5 2

ðz

0
dz9(r 2 r0)g

1
1

H

ðH

0
dz9

ðz9

0
dz0(r 2 r0)g

1
L2

H

ðH

0
dz9r̂a*d.

Substituting into Eq. (A3) gives the anelastic version of

prognostic WPG:

›td 5 2
g

r̂L2

ðz

0
dz9(r 2 r0)

1
g

r̂L2

1

H

ðH

0
dz9

ðz9

0
dz0(r 2 r0) 2 a*d

1
1

r̂H

ðH

0
dz9r̂a*d. (A6)

It is straightforward to confirm that

ðH

0
dz9r̂›td 5 0,

which guarantees that the vertical velocity at z 5 0 and

z 5 H remains zero.

The diagnostic equations are

0 5
p(z, t) 2 p0(z)

r̂(z)L2
2 a*(z)d(z, t), (A7)
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›zp(z, t) 5 2r(z, t)g, (A8)

›z[r̂(z)w(z, t)] 1 r̂(z)d(z, t) 5 0. (A9)

Multiplying Eq. (A7) by r̂/a* and using Eq. (A9) gives

p 2 p0

a*L2
1 ›z(r̂w) 5 0.

Integrating in height from z 5 0 to z 5 H gives

ðH

0
dz

p 2 p0

a*L2
5 0.

Adding ›zp0 5 r0g to Eq. (A8) and integrating in height

from 0 to z gives

p 2 p0 5 2

ðz

0
dz9(r 2 r0)g 1 C,

where C is an integration constant. Dividing by a* and

integrating over height from 0 to H, we can identify C

with the help of the previous equation. This gives

p 2 p0 5 2

ðz

0
dz9(r 2 r0)g

1
1ðH

0
dz(1/a*)

ðH

0
dz9

1

a*

ðz9

0
dz0(r 2 r0)g.

Substituting into Eq. (A7) gives the anelastic version of

diagnostic WPG:

d 5
g

a*r̂L2

"
2

ðz

0
dz9(r 2 r0)

1
1ðH

0
dz(1/a*)

ðH

0
dz9

1

a*

ðz9

0
dz0(r 2 r0)

#
. (A10)

Again, it is straightforward to confirm that

ðH

0
dz9r̂d 5 0,

as desired.
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