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ABSTRACT

Tracers are used in a large-eddy simulation of shallow convection to show that stochastic entrainment

(and not cloud-base properties) determines the fate of convecting parcels. The tracers are used to diagnose

the correlations between a parcel’s state above the cloud base and both the parcel’s state at the cloud base

and its entrainment history. The correlation with the cloud-base state goes to zero a few hundred meters

above the cloud base. On the other hand, correlations between a parcel’s state and its net entrainment

are large. Evidence is found that the entrainment events may be described as a stochastic Poisson pro-

cess. A parcel model is constructed with stochastic entrainment that is able to replicate the mean and

standard deviation of cloud properties. Turning off cloud-base variability has little effect on the results,

which suggests that stochastic mass-flux models may be initialized with a single set of properties. The

success of the stochastic parcel model suggests that it holds promise as the framework for a convective

parameterization.

1. Introduction

The motivation for this paper is to answer a very

simple question about atmospheric convection: Which

more strongly affects a cloudy updraft’s state in the free

troposphere: its initial conditions at the cloud base or the

sequence of entrainment events above the cloud base?

For example, were the most buoyant parcels in a cloud

destined to be so at birth (e.g., because they were born

with a high equivalent potential temperature ue at the

cloud base) or did they become the most buoyant, be-

cause they were treated well during the course of their

life (e.g., because they experienced a minimum of en-

trainment)? This is a question of nature versus nurture.

This question can also be phrased in terms of the var-

iability that is observed within convecting clouds. As has

been observed, clouds are highly heterogeneous entities,

with temperature, humidity, buoyancy, and vertical ve-

locity varying significantly among the parcels that make

up a single cloud (e.g., Warner 1977; Jonas 1990). This

variability among the cloudy parcels can be generated

in two ways: from the original heterogeneity among the

cloud-base parcels or by stochastic entrainment above

the cloud base, which introduces new variability.

If the existing mass-flux models of clouds are any in-

dication, there is little agreement regarding which of

these two processes is more important. In mass-flux

models that use a deterministic entrainment rate—

such as the constant rate used by Tiedtke (1989) or the

velocity-dependent rate of Neggers et al. (2002)—the

variability of cloudy updrafts in the free troposphere is

owed entirely to the variability at the cloud base. In

mass-flux models that use a stochastic entrainment

mechanism—such as the model of Raymond and Blyth

(1986)—variability in the free troposphere can be gen-

erated without any cloud-base variability.

To tease out the relative importance of nature and

nurture, we present results from a large-eddy simulation

(LES) of shallow convection during the Barbados Ocean-

ographic and Meteorological Experiment (BOMEX;

Holland and Rasmusson 1973). Using tracers, we are able

to calculate the squared correlation coefficients—roughly,

the explained variance—between the free-tropospheric

parcel properties and both the parcel’s cloud-base prop-

erties (nature) and the parcel’s entrainment history

(nurture). To further test the relative importance of na-

ture versus nurture, we build a stochastic parcel model in

which the two sources of variability can be turned off

independently.
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A brief outline of the subsequent sections is as follows:

Section 2 describes the cloud-resolving model (CRM)

used for the LES, the setup of the simulation, and the

tracers method. Section 3 presents the results from the

CRM. Section 4 describes the stochastic parcel model,

and section 5 describes the results of three runs: with

both sources of variability, with only cloud-base vari-

ability, and with only entrainment variability. Section 6

summarizes the conclusions.

2. The LES model

The model used here to replicate the shallow con-

vection during the BOMEX field campaign is Das

Atmosphärische Modell (DAM; Romps 2008). DAM is

a three-dimensional, finite-volume, fully compressible,

nonhydrostatic, cloud-resolving model. In its standard

implementation, DAM uses the six-class Lin–Lord–

Krueger microphysics scheme (Lin et al. 1983; Lord

et al. 1984; Krueger et al. 1995). To better simulate the

nonprecipitating convection observed during BOMEX,

autoconversion of cloud water to rain is turned off. In-

stead of using an interactive radiation scheme, the ra-

diative cooling is specified as the fixed profile used in the

intercomparison study of Siebesma et al. (2003).

The simulation was performed on a doubly periodic

square domain with a 12.8-km width and a model top at

3 km. The grid spacing in both the horizontal and ver-

tical dimensions was set to 50 m. The run was initialized

using the initial profiles of water vapor, temperature,

and horizontal velocities as described in appendix B of

Siebesma et al. (2003), with a small amount of random

noise in temperature added to break translational sym-

metry. In particular, the temperature profile consists of

a dry lapse rate from the surface to 520 m, a condition-

ally unstable lapse rate from 520 to 1480 m, and a stable

inversion from 1480 to 2000 m. During the simulation,

a large-scale vertical velocity, radiative cooling, advective

moisture sink, and horizontal pressure gradient were

applied as described by Siebesma et al. (2003). Unlike

that intercomparison study, a bulk parameterization

was used to calculate the surface fluxes off the 300.4-K

ocean surface. The CRM was run for 3 h to reach a

steady state followed by 5 h during which statistics were

collected.

DAM is outfitted with a variety of tracers to diagnose

convection, the most important of which is the purity

tracer. The purity tracer f is a mixing ratio that records

the fraction of dry air in a grid cell that was recently

advected from the cloud base. Here, the ‘‘cloud base’’

is defined as the minimum height at which the area-

averaged and time-averaged cloud cover has a local

maximum; in the simulation, this gives a height of 625 m.

At every time step, the purity tracer is set to one below

the cloud base and to zero everywhere above the cloud

base except in the vicinity of a cloudy updraft. In this

way, clouds begin their life at the cloud base with a pu-

rity f of 1 and they advect the purity tracer passively,

all the while entraining environmental air with a purity

of 0. Therefore, the purity of a cloudy updraft is equal

to the fraction of air that came directly from the sub-

cloud layer; 1 minus the purity is the fraction of air that

was entrained.

A grid cell is defined here as a cloudy updraft when its

liquid-water mass fraction is greater than 1025 kg kg21

and its vertical velocity is greater than 0.5 m s21. This

choice is but one of many possible definitions. For ex-

ample, in a study of shallow convection, Siebesma and

Cuijpers (1995) define a grid cell to be a cloudy updraft if

it has a positive liquid-water mass fraction and a positive

vertical velocity. The definition we have chosen differs

by the use of nonzero thresholds for both quantities,

which avoids mistakenly identifying as updrafts any de-

trained air with very slight amounts of liquid. It also

avoids counting cloudy Brunt–Väisälä oscillations as

updrafts, which could lead to an overestimation of the

cloudy-updraft mass flux. Another definition used by

Siebesma and Cuijpers (1995) is that of a ‘‘cloud core,’’

which has a positive liquid content, vertical velocity,

and buoyancy. Our standard definition of cloudy up-

draft avoids any requirement of buoyancy so as to allow

parcels to qualify as cloudy updrafts even as they are

punching through an inhibition layer or overshooting

their level of neutral buoyancy.

As already mentioned, the purity tracer is zeroed out at

every time step above the cloud base except in the vicinity

of a cloudy updraft.1 We define a grid cell to be in the

vicinity of a cloudy updraft if a 350-m-wide cube, cen-

tered on the grid cell, contains any cloudy updraft. By not

zeroing out the purity tracer in these protected volumes,

the purity tracer is preserved in eddies of size &300 m

even if the grid cells in the downward branch do not

qualify as a cloudy updraft. A cartoon of this approach is

depicted in Fig. 1, which shows an x–z slice of convection

at a snapshot in time.

As discussed by Romps and Kuang (2010), it is pos-

sible to encode information into parcels using additional

tracers. In particular, we can encode N real numbers into

cloudy updrafts by using the purity tracer plus N addi-

tional tracers. Above the cloud base, these additional

tracers are treated in exactly the same way as the purity

1 Note that this method of zeroing out the purity tracer differs

from the one used by Romps and Kuang (2010), which is not ap-

plicable in the presence of a mean advection.
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tracer: they are advected conservatively within pro-

tected volumes and they are zeroed out at every time

step outside those protected volumes. This guarantees

that cloudy updrafts entrain environmental air that has

0 values of all N 1 1 tracers. The only differences be-

tween the N 1 1 tracers are the different values they are

assigned below the cloud base. As discussed above, the

purity tracer is reset to 1 everywhere below the cloud

base at every time step. The other N tracers are reset—

below the cloud base at every time step—to whatever

value we want to encode in the cloudy updrafts. Since

cloudy updrafts entrain air that has 0 values of all N 1 1

tracers, entrainment reduces the values of all tracers by

the same factor. Therefore, the original cloud-base values

of the N additional tracers can be decoded by dividing by

the value of the purity tracer.

Since this is a new technique, it is worth giving an ex-

ample. As a very simple example, consider two tracers:

a purity tracer and a ‘‘time tracer.’’ At every time step and

everywhere below the cloud base, we set the purity tracer

to 1 and the time tracer to the current model time. Now,

consider a parcel in a cloudy updraft that passes through

the cloud base at 1140 s. As it leaves the subcloud layer,

the parcel carries with it a purity tracer equal to 1 and

a time tracer equal to 1140. Let us imagine that the parcel

reaches a height of 1500 m after having entrained 4 times

its (dry air) mass in (dry) environmental air. Since the

environmental air has 0 values of both tracers, the new

mixing ratios are (1 3 1 1 4 3 0)/(1 1 4) 5 0.2 and (1 3

1140 1 4 3 0)/(1 1 4) 5 228. In practice, we do not

track parcels in the LES as they move from the cloud

base to, say, 1500 m. Instead, we simply observe parcels

at 1500 m. If we were to observe this parcel at 1500 m

at 1590 s, we could divide the time tracer by the purity

tracer to get 228/0.2 5 1140, which tells us that it took

the parcel 1590 2 1140 5 450 s to travel there from the

cloud base.

Of course, there is no reason why the additional N

tracers must be set to a uniform value below the cloud

base. Instead, we can set tracers equal to the local

properties of the air below the cloud base. For example,

we could use a ‘‘ue tracer’’ that is set in each grid cell

below the cloud base to the value of ue in that grid cell.

Thereby, a parcel with ue 5 350 K as it passes through

the cloud base will carry a purity tracer equal to 1 and

a ue tracer equal to 350. If the parcel is later observed

above the cloud base with a purity tracer equal to 0.16

and a ue tracer equal to 56, then its original cloud-base

value of ue can be decoded by dividing: 56/0.16 5 350 K.

Similarly, a ‘‘velocity tracer’’ can be set to the local value

of vertical velocity below the cloud base; when a parcel

is observed in the free troposphere with a purity of 0.64

and a velocity tracer equal to 2.08, we can infer that it

had a velocity of 2.08/0.64 5 3.25 m s21 at the cloud

base. In the simulations presented here, we have used

tracers to record the cloud-base vertical velocity, water

vapor, liquid water, temperature, potential temperature,

and equivalent potential temperature.

3. The LES results

During the last 5 h of the LES, snapshots were

recorded at 5-min intervals of the layer at 1275 m, which

was chosen for its proximity to the 1250-m height stud-

ied by Neggers et al. (2002). The grid cells at this height

are then plotted on axes of total water qt and liquid-

water potential temperature ul, both of which are exactly

conserved for adiabatic and reversible transformations.

For small water-vapor mixing ratios (less than about

0.02 kg kg21), ul is roughly equal (within about 1 K) to

the potential temperature of the parcel before any water

vapor has been condensed. (See the appendix for a def-

inition and derivation of ul.) Plotting the 1275-m grid

cells on axes of qt and ul, we obtain the Paluch diagram

displayed in Fig. 2. The solid line in Fig. 2 corresponds to

the mean environmental profile with the mean surface-

air value in the upper left at high qt and low ul. The

dashed line separates the region above, where parcels

with the corresponding qt and ul would be saturated at

the mean pressure at 1275 m, from the region below,

where parcels would be unsaturated. The dotted line

denotes the parcels whose qt and ul would make them

neutrally buoyant at 1275 m; the region above the dot-

ted line corresponds to positive buoyancy and the region

below corresponds to negative buoyancy. The mean

values of qt and ul at 1275 m occur where the dotted line

intersects the solid line.

FIG. 1. At every time step, the purity tracer is set to 1 below the

cloud base and to 0 outside protected volumes above the cloud base.

Protected volumes are defined as grid cells for whom the sur-

rounding 350-m-wide cube contains a cloudy updraft. A grid cell is

defined as hosting a cloudy updraft if it has more than 1025 kg kg21

of liquid water and a vertical velocity greater than 0.5 m s21.
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The points in Fig. 2 may be thought of as comprising

two groups. First, there is the nearly motionless group-

ing of unsaturated points roughly centered around the

mean value of qt and ul at 1275 m, which corresponds to

the environmental air. Second, there is the long ‘‘tail’’ of

saturated points extending from the saturation curve all

the way up to the properties of pure surface air. This

long tail is indicative of a large amount of variability

among cloudy parcels.

As Neggers et al. (2002) illustrated quite nicely, this

variability cannot be reproduced using an ensemble of

Lagrangian parcels initialized with the observed cloud-

base values and made to entrain with a fixed, constant

rate. In other words, they found that the variability in

cloud-base properties was not sufficiently large to explain

the variability further up in the atmosphere. This fact

would seem to suggest that nurture, not nature, is re-

sponsible for the long Paluch tail. Instead, Neggers et al.

(2002) further pursued the nature explanation by postu-

lating a mechanism that would deterministically grow the

cloud-base variability. In particular, they argued that the

fractional entrainment rate for parcels goes like one over

the vertical velocity, �; 1/w. This argument would imply

that the more buoyant updrafts, which will move more

quickly, would entrain less and so would become even

more buoyant than the other updrafts. Acting between

the cloud base and 1275 m, this positive feedback on

buoyancy would spread the distribution of cloudy up-

drafts into this long tail, from low buoyancy near the

dotted line to high buoyancy near the surface values.

Based on the ability of the w-dependent � to reproduce

the Paluch tail, this model of entrainment has been im-

plemented in the Integrated Forecasting System of the

European Centre for Medium-Range Weather Forecasts

(ECMWF) (Neggers et al. 2009).

If the explanation of Neggers et al. (2002) were cor-

rect, then there would be excellent correlations between

the buoyancy of a parcel at 1275 m and the values of w

and ue that the parcel had at the cloud base. To test this

concept, we have used the tracers that record w and ue at

the cloud base. By binning cloudy-updraft mass flux at

1275 m on a two-dimensional histogram with axes cor-

responding to 1275-m buoyancy and cloud-base w, we

produce the contour plot in the left panel of Fig. 3. The

same plot using cloud-base ue is shown in the middle

panel of Fig. 3. Instead of excellent correlations, there is

almost no correlation in either of these figures: 1275-m

buoyancy is correlated with cloud-base w with an R2 of

0.01 and with cloud-base ue with an R2 of 0.00. The

contour plots of 1275-m qt and 1275-m ul versus cloud-

base w and cloud-base ue (not shown) are qualitatively

identical; there is no correlation.

Since this is an important point, it is worth checking

that this result does not depend on the definition of

cloudy updrafts. To this end, we can repeat the simula-

tion using a more restrictive definition of cloudy updraft

that includes grid cells whose liquid-water mass fraction

is greater than 1025 kg kg21, whose vertical velocity is

greater than 0.5 m s21, and whose buoyancy is positive;

this is similar to the cloud-core category defined by

Siebesma and Cuijpers (1995). The results, displayed in

the left and middle panels of Fig. 4, show that the lack of

correlation persists even for this more restrictive class

of updrafts. Again, the contour plots with 1275-m buoy-

ancy replaced by 1275-m ul or qt exhibit the same lack of

correlation, which shows, rather convincingly, that the

variability in cloud-base properties is not responsible

for the variability at 1275 m. In other words, nature is

not responsible for the long Paluch tail.

Since cloud-base properties are uncorrelated with 1275-m

properties, the variability in cloudy updrafts at 1275 m

must be generated from one of two remaining sources of

variability: either the random properties of the clear-air

environment through which the updraft ascends or ran-

domness in when and how much clear air an updraft

entrains. We can easily rule out the first possibility by

calculating the magnitude of the clear-air moisture vari-

ability. For this purpose, we define the effective water-

vapor mass fraction between the cloud base and 1275 m as

q
y,effective

[

ð1275 m

cloud base

dzq
y
r

� �

ð1275 m

cloud base

dzr

� � .

FIG. 2. The Paluch diagram at 1275 m from the cloud-resolving

simulation. The circles on the mean environmental profile are la-

beled with the corresponding heights in meters.
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The standard deviation of this quantity among columns

that contain no cloud is 1.5 3 1024 kg kg21, which is

an order of magnitude smaller than the standard devi-

ation of total water among cloudy updrafts at 1275 m.

Therefore, the variance at 1275 m cannot be explained

by the variance in the environment through which the

updraft ascends.

We can now use the purity tracer to confirm that the

only remaining possibility—stochastic entrainment—is

responsible for the variance at 1275 m. Binning the

cloudy-updraft mass flux on a two-dimensional histo-

gram with axes of buoyancy at 1275 m and purity at

1275 m, we find the excellent correlation shown in the

right panel of Fig. 3. At 1275 m, buoyancy and purity

are correlated with an R2 of 0.90. Therefore, the free-

tropospheric buoyancy is highly correlated with net en-

trainment, as measured by purity. The same contour plot

for the more restrictive cloud-core definition of cloudy

updraft is shown in the right panel of Fig. 4, which has an

R2 of 0.88. Correlations of 1275-m qt and 1275-m ul with

1275-m purity have similarly high R2 values for both

definitions of cloudy updrafts. We conclude, therefore,

that nurture, not nature, is responsible for the variability

in cloudy updrafts at 1275 m. In other words, the fate of

a parcel depends not on the conditions of its birth but

rather on the stochastic entrainment events experienced

during its lifetime.

Nevertheless, there must be a height sufficiently close

to the cloud base where nature, not nurture, explains

more of the variance in cloudy updraft properties. For

example, right above the cloud base, the buoyancy of

a parcel must correlate strongly with its properties at the

cloud base. It is of interest to ask at what height the

dependence switches from nature to nurture. For this

purpose, we can produce histograms like those in Fig. 3

for every height and record the R2. Roughly speaking,

this tells us how much of the cloudy-updraft variance can

be explained by nature and nurture. The left panel of

Fig. 5 shows profiles of the R2 between buoyancy at each

height and three other quantities: purity at that height,

FIG. 3. Contours of 1275-m cloudy-updraft flux on axes of 1275-m buoyancy vs (left) cloud-base velocity, (middle) cloud-base equivalent

potential temperature, and (right) purity.

FIG. 4. As in Fig. 3, but with the more restrictive cloud-core definition of cloudy updrafts.
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velocity at the cloud base, and ue at the cloud base. The

middle and right panels of Fig. 5 for ul and qt are similar.

We see that cloud-base ue is correlated well with buoy-

ancy and total water only in the first 100 m above the

cloud base. There is no height where cloud-base w cor-

relates well with buoyancy and total water. And neither

cloud-base ue nor cloud-base w correlates well with ul at

any height. In contrast, the purity correlates very well

with buoyancy, ul, and qt at all heights greater than

100 m above the cloud base. Since the purity is a mea-

sure of a parcel’s entrainment history, this tells us that

the entrainment history is the most important predictor

of a parcel’s state throughout the vast majority of the

cloud layer.

Given the importance of the entrainment process, it is

worth trying to glean more about it from the LES results.

To do so, we focus on the mass flux of cloudy updrafts

that are undiluted, which are defined here to have

a purity greater than 80%. The choice of this threshold

is arbitrary aside from a desire to be consistent with

Romps and Kuang (2010). As shown in Fig. 6, the un-

diluted flux in the CRM decays exponentially all the way

up to the inversion at around 1500 m. A best-fit expo-

nential to the undiluted flux below the inversion yields

an e-folding decay distance of l ’ 200 m. Romps and

Kuang (2010) also found an exponential decay of un-

diluted flux in deep convection, but with an e-folding

decay distance of about 500 m.

An exponential decay with height implies that an

undiluted parcel has a probability dz/l of becoming di-

luted while traversing the distance dz. Let us assume

that all entrainment events entrain a mass of environ-

mental air at least as large as 25% of the parcel’s mass. In

that case, an entrainment event will knock a parcel out

of the undiluted category—as defined by .80% purity—

regardless of just how much air is entrained. Therefore,

we can interpret dz/l as the probability that any parcel

experiences an entrainment event while ascending a dis-

tance dz. In other words, entrainment events behave like

a stochastic Poisson process. The probability that a parcel

travels a distance z without entraining is

lim
dz!0

1� dz

l

� �z/dz

5 e�z/l.

The probability that a parcel has its next entrainment

event after a distance between z and z 1 dz is e2z/l 2

e2(z1dz)/l 5 (dz/l)e2z/l. This result is similar in spirit

to the treatment of entrainment events in the one-

dimensional mixing model of Krueger et al. (1997), but

FIG. 5. (left) Value of R2 at each height for buoyancy vs cloud-base vertical velocity (dotted), buoyancy vs cloud-base ue (dashed), and

buoyancy vs purity (solid). (middle), (right) As at left, but for ul and qt, respectively.

FIG. 6. The undiluted (.80% pure) cloudy-updraft flux (circles)

from the CRM and the flux-weighted best-fit exponential (line) of

0.005 m21 (or 1/200 m).
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the evidence here indicates that the distance between

entrainment events should be drawn from an expo-

nential distribution (as befitting a Poisson process),

not from a Poisson distribution. Using this exponential

distribution, the mean distance between entrainment

events is

ð‘

0

z
dz

l
e�z/l 5 l.

Therefore, l ’ 200 m is the mean distance between

entrainment events.

This suggests that convection may be modeled using

an ensemble of parcels that are initialized identically

and subjected to entrainment events using a Monte Carlo

method. Different effective entrainment rates and levels

of neutral buoyancy fall out of this approach naturally:

lucky parcels entrain relatively little and ascend relatively

high, while unlucky parcels suffer the opposite fate. A

convective parameterization built around this principle

would be relatively straightforward to implement, espe-

cially in the case of nonprecipitating convection where

there is no parcel-to-parcel communication in the form of

evaporating rain. As a step in this direction, we construct

a stochastic parcel model in the next section and verify its

behavior against the LES results in section 5.

4. Stochastic parcel model

The parcel model that is used here bears close simi-

larity to the model described by Romps and Kuang

(2010). In short, the model describes the evolution of

a spherical parcel of air whose properties are described

by its height z(t), volume V(t), temperature T(t), density

r(t), water vapor mass fraction qy(t), liquid-water mass

fraction ql(t), and vertical velocity w(t). A numerical

model integrates the ordinary differential equations that

evolve these quantities in time. To close the problem,

the model is also given environmental profiles of density

re(z), water-vapor mixing ratio qye(z), pressure pe(z),

and temperature Te(z). At all times, the pressure of the

parcel is set to the pressure of the environment: p(t) 5

pe[z(t)]. The parcel model is run for 1 h, which is enough

time for any parcel to have settled down at is level of

neutral buoyancy. The appendix of Romps and Kuang

(2010) provides further details of the model.

Since we are interested in modeling nonprecipitating

shallow convection, we turn off precipitation in this ver-

sion of the parcel model. Also, instead of using a constant

entrainment rate �, we model � as a random variable that

is zero except during delta-function bursts that cor-

respond to entrainment events. For a sufficiently small

Dt, we can model the integral of � over the time interval

[t, t 1 Dt] as a random variable itself. We can write that

integral as

ðt1Dt

t

dt9�(t9) 5 XF,

where X is a random variable that takes the value of 1 if

an entrainment event occurs in the interval [t, t 1 Dt] and

0 otherwise, and F is a random variable equal to the

fractional mass of air entrained during the event. The

probability distribution of X is defined by P(X 5 1) 5

Dtjwj/l and P(X 5 0) 5 1 2 Dtjwj/l. In practice, Dt is the

model time step and F needs to be evaluated only when

X 5 1.

Although the exponential decay of undiluted flux has

motivated the choice of distribution for X, there is little

to inform the choice of distribution for F. Of course, for

the integral of � over Dt to be finite, P(F 5 f ) must go

to zero as f goes to infinity, but this is not much of a

constraint. For simplicity, then, we use an exponential

distribution,

P(F 5 f ) 5
1

s
e� f /s, (1)

where s is the mean ratio of entrained mass to parcel

mass in an entrainment event. Since X and F are un-

correlated, the mean fractional entrainment per dis-

tance is s/l.

In practice, the entrainment rate is modeled using

a Monte Carlo method. At each time step, the proba-

bility of an entrainment event is jwjDt/l. A random

number generator is used to pick a number from a uni-

form distribution between 0 and 1. If the value is greater

than jwjDt/l, then � is set to 0, and the evolution of the

parcel for that time step proceeds without entrainment.

Otherwise, if the value is less than jwjDt/l, an entrain-

ment event is begun. In that case, a random number

generator is used to select a number f from the expo-

nential distribution in (1). Ideally, we would use a form

of time splitting to entrain the entire mass of air during

that one time step. In practice, we set �5 ( fM0/M)/(NDt)

during the next N time steps, where N is chosen to be

as small as possible without triggering numerical in-

stability. Here, M is the mass of the parcel, and M0 is the

mass of the parcel at the beginning of the N time steps;

the ratio M0/M guarantees that the total mass entrained

is equal to fM0. After the N time steps, � is reset to 0 until

the next time that X 5 1, at which point the process

repeats. Since jwjNDt is, in general, much smaller than l,

the fraction of time a parcel spends entraining is negli-

gibly small, so this procedure does a good job of ap-

proximating instantaneous entrainment events.
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To initialize the parcel model, we use cloud-base con-

ditions saved from the CRM. During the LES, snapshots

of the cloud-base layer were saved every 5 min. These

snapshots include the pressure, temperature, water va-

por, liquid water, and vertical velocity. Each slice con-

tains 256 3 256 5 65 536 grid cells, which, at 5-min

intervals over 5 h, provides about 4 million initial con-

ditions. This allows us to evolve 4 million parcels, each

initialized with a volume equal to the volume of a grid

cell. The background values of pressure, density, tem-

perature, and humidity through which the parcel travels

are taken from profiles averaged over the 5-h LES. Each

parcel is integrated for 1 h, which is a sufficient length

of time for cloudy updrafts, which travel at a minimum

speed of 0.5 m s21, to reach up past the inversion, which

begins at 1500 m.

To find the values of l and s that give the best fit to the

CRM results, we run the parcel model 141 times using

different combinations of l and s, each time simulating

four million parcels. The mean entrainment distance l

was set to values from 10 m to 10 km in powers of 21/2.

Similarly, the mean entrainment fraction s was set to

values from 0.01 to 10 in powers of 21/2. We seek values

for l and s that will give the best agreement to the total

flux of cloudy updrafts and what we will call the ‘‘purity

flux,’’ which we define as the flux of purity tracer within

cloudy updrafts. For a single cloudy updraft with a mass

flux of dry air M, the purity flux will be fM. Note that the

average purity flux, fM, is not the same as the undiluted

flux, MH(f � 80%), where H is the Heaviside step

function. To optimize l and s, we define the objective

function to be the sum of the squared residuals on the total

and purity fluxes between the parcel model and the CRM:

ðmodel top

cloud base

dz[(Mj
parcel model

� Mj
CRM

)2
1 (fMj

parcel model
� fMj

CRM
)2], (2)

where the bar denotes an average over cloudy updrafts.

A contour plot of this objective function is shown in

Fig. 7. The best fit (i.e., the minimum of the objective

function) is marked by an asterisk. This best fit occurs

for l 5 226 m and s 5 0.91, which corresponds to a mean

entrainment rate of 4.0 3 1023 m21. In other words, the

mean distance that a parcel travels between entrainment

events is 226 m. The average mass of environmental air

that the parcel entrains is 0.91 times the mass of the parcel,

which means that cloudy and environmental air mix in

nearly a 1:1 ratio. Note that the best fit of l 5 226 m

agrees well with the value diagnosed from the undiluted

flux in the LES. It is also reassuring to note that the mean

entrainment rate obtained here is similar to the rate of

3–4 3 1023 m21 diagnosed for this simulation using direct

measurement (Romps 2010).

Before we move on, let us make sense of the overall

shape of the objective function in Fig. 7. First, note that

we expect stochastic entrainment to give the same results

as constant entrainment in the limit of small l for fixed

s/l. Therefore, in the small-l limit, we expect the objec-

tive function to have a relatively flat valley oriented along

s } l. The flatness is expected, because the entrainment

process is invariant with respect to l in the small-l limit.

The valley should be oriented along s } l, because there

should be a single fractional entrainment rate that gives

the best fit for the constant entrainment model, and the

fractional entrainment rate is equal to s/l. In Fig. 7, we see

that there is such a valley running from (l, s) 5 (10, 0.03)

to (100, 0.3) with small fractional changes in the height of

the valley floor. On the other hand, we see that the valley

deviates from a straight line for l . 100 m. For example,

the valley follows s } l1.6 in the vicinity of the best fit. This

deviation from a one-to-one line tells us that stochastic

entrainment is different from constant entrainment for

l * 100 m. And, in this regime, the value of l matters: the

valley floor drops an order of magnitude from l 5 100 m

to the best-fit value at l 5 226 m.

FIG. 7. The objective function in Eq. (2) normalized by its

minimum value, which occurs at the location of the asterisk. The

best fit has a mixing length of 226 m and an entrainment fraction

of 0.91.
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From here on, we will use the best-fit values of s and l

in the stochastic parcel model. As shown in Fig. 8, the

purity flux (middle panel) is replicated rather well by the

parcel model with these values, but the total flux (left

panel) is underestimated. Dividing the purity flux by the

total flux gives the average purity of cloudy updrafts

(right panel). Since the parcel model underestimates the

total flux, the average purity is too high. This suggests that

the parcel model may be having difficulty accelerating

diluted parcels into the cloudy-updraft classification,

which requires a vertical velocity greater than 0.5 m s21.

This may be caused by using too large a drag force. It is

quite plausible that individual parcels ascending within

clouds do not experience the same drag force as they

would ascending through still air, as we have modeled

them here. Nevertheless, we have not attempted to tune

the drag force because it would involve a good deal of

work and it would not affect the conclusions.

5. Stochastic parcel results

One of the benefits of a parcel model is that it can

be modified to turn off either cloud-base variability or

entrainment variability to explore their relative im-

portance. We will study three versions of the stochastic

parcel model. The first is the standard run of the parcel

model using the best-fit values of l and s, which we refer

to as FullVar because it includes the full variability from

both initial conditions and entrainment. In the cloud-

base variability (CBVar) run, the stochastic entrainment

is replaced with a constant entrainment rate, so the only

source of variability comes from the initialization at the

cloud base. In the entrainment variability (EntVar) run,

the parcels are initialized with a fixed set of properties,

so the only source of variability comes from the sto-

chastic entrainment.

Since we would like to compare the Paluch diagrams

among the FullVar, CBVar, and EntVar runs, it is im-

portant that the parcels in each of those runs reach the

height of 1275 m. In the CBVar run with a constant

entrainment rate of 4.0 3 1023 s21, none of the parcels

reaches 1275 m, which should not come as a surprise.

In the CRM and in the stochastic parcel model, the

parcels that manage to reach 1275 m are those that have

entrained at a rate far less than average. In the CBVar

simulation, where we use a constant and continuous en-

trainment rate, we must tune the entrainment rate to get

parcels to the desired height. We found that using an

entrainment rate of � 5 2.0 3 1023 s21 was sufficiently

low to produce cloudy updrafts at 1275 m. In the EntVar

FIG. 8. The (left) total cloudy-updraft flux, (middle) cloudy-updraft purity flux, and (right) average purity of cloudy updrafts for the

cloud-resolving simulation (solid) and the stochastic parcel model (dashed).

FIG. 9. The total cloudy-updraft mass flux for the CRM (solid),

FullVar (dashed), EntVar (dotted–dashed), and CBVar (dotted)

simulations.
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simulation, we use the same s and l as in FullVar, but we

initialize all parcels using the mean properties (pres-

sure, temperature, water vapor, liquid water, and ver-

tical velocity) of the cloudy updrafts at the cloud base in

the CRM. This process produces cloudy updrafts at

1275 m without any difficulty.

As in the CRM, we define parcels as cloudy updrafts in

FullVar, EntVar, and CBVar if they have a liquid-water

mixing ratio greater than 1025 kg kg21 and a vertical

velocity greater than 0.5 m s21. Therefore, parcels con-

tribute to the cloudy-updraft averages only at heights

where they satisfy those two conditions. Figure 9 shows

the total cloudy-updraft mass flux for the CRM (solid),

FullVar (dashed), EntVar (dotted–dashed), and the

CBVar (dotted) simulations. The curves for the CRM

and FullVar are the same as in Fig. 8. From the other two

curves, we see that the EntVar simulation does a very

good job of matching the CRM, but the CBVar simula-

tion does a very poor job. The CBVar curve is similar to

what one would expect from a set of continuously en-

training parcels with similar initial conditions: first, the

parcels entrain, causing an increase in the total mass flux;

then, near their level of neutral buoyancy, the mass flux

quickly decreases to zero. Needless to say, it is qualita-

tively different from the mass flux observed in the CRM.

The flux-weighted means of three quantities—w, ul,

and qt—are shown in Fig. 10 for the CRM (solid),

FullVar (dashed), EntVar (dotted–dashed), and CBVar

(dotted) simulations. The mean vertical velocity (left

panel) is replicated well by both the FullVar and EntVar

simulations. As might be expected from the very dif-

ferent mass-flux profile for CBVar in Fig. 9, the mean

velocity for CBVar is also quite different from the CRM.

Below the inversion, all three models match the mean

CRM profiles of ul and qt qualitatively: as parcels get

diluted with height, they entrain environmental air with

a higher ul and a lower qt. As we have already seen from

Fig. 8, the purity is positively biased; accordingly, in

Fig. 10, ul is negatively biased, and qt is positively biased.

Since the original motivation for the stochastic en-

trainment was the large and unexplained heterogeneity

of cloudy updrafts, we should also look at the standard

FIG. 10. The mean profiles of (left) vertical velocity, (middle) liquid-water potential temperature, and (right) total water for cloudy

updrafts in the CRM (solid), FullVar (dashed), EntVar (dotted–dashed), and CBVar (dotted).

FIG. 11. The standard deviation profiles of (left) vertical velocity, (middle) liquid-water potential temperature, and (right) total water for

cloudy updrafts in the CRM (solid), FullVar (dashed), EntVar (dotted–dashed), and CBVar (dotted).
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deviations of w, ul, and qt among the different model

runs. Figure 11 shows these standard deviations at each

height in the CRM (solid), FullVar (dashed), CBVar

(dotted), and EntVar (dotted–dashed) parcel models.

Both the FullVar and EntVar simulations do a very

good job of capturing the variability in the CRM below

the inversion. The fact that EntVar does as well as

FullVar further demonstrates that cloud-base variability

is irrelevant to variability in the cloud layer. Indeed, the

CBVar simulation replicates virtually none of the vari-

ability seen in the CRM.

Given these results, it is not surprising that FullVar

and EntVar replicate well the 1275-m Paluch diagram,

while CBVar does not. As shown in the left and middle

panels of Fig. 12, FullVar and EntVar both reproduce

the long Paluch tail. On the other hand, the Paluch di-

agram for CBVar, shown in the right panel of Fig. 12,

consists of a tight blob of values that bears no resemblance

to Fig. 2.

6. Conclusions

The preceding results show that nurture, not nature, is

responsible for the variability among cloudy updrafts in

shallow convection. We have seen that a parcel’s state

above the cloud base has virtually no correlation with

its original state at the cloud base, which rules out theo-

ries of updraft variability that rely on an amplification

of cloud-base variability through, for example, state-

dependent entrainment rates. However, a parcel’s state

does correlate very well with its net entrainment, which

suggests that stochastic turbulence is providing the ob-

served variability. As to the form of this mixing, we have

found evidence that entrainment behaves like a stochastic

Poisson process.

We have found that a stochastic parcel model re-

produces well the variability observed in the CRM. On

the other hand, a parcel model with a constant and con-

tinuous entrainment rate produces almost none of the

observed variability. In fact, the cloud-base variability

may be eliminated from the stochastic parcel model with

almost no effect on the variability of parcels above the

cloud base, which suggests that modeling convection as

an ensemble of realizations of a single parcel with Monte

Carlo entrainment may be a promising approach to con-

vective parameterization.
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APPENDIX

Definition and Derivation of ul

To derive an expression for ul, we follow, almost

verbatim, the derivation for ue given by Romps and

Kuang (2010). We begin with the specific entropies of

dry air, water vapor, liquid water, and solid water, de-

noted by subscripts a, y, l, and s, respectively:

s
a

5 c
pa

log(T/T
trip

)� R
a

log( p
a
/p

trip
),

s
y
5 c

py
log(T/T

trip
)� R

y
log( p

y
/p

trip
) 1 s

0y
,

s
l
5 c

yl
log(T/T

trip
), and

s
s
5 c

ys
log(T/T

trip
)� s

0s
.

Here, cy and cp are the heat capacities at constant vol-

ume and pressure, ptrip and Ttrip are the pressure and

FIG. 12. The Paluch diagram of cloudy updrafts at 1275 m for (left) FullVar, (middle) EntVar, and (right) CBVar.
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temperature of the triple point, pa and py are the partial

pressures of air and vapor, and s0y and 2s0s are the spe-

cific entropies of vapor and solid at the triple point. Using

r to denote mixing ratios, the entropy per dry-air mass,

s
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1 r
y
s

y
1 r

l
s

l
1 r

s
s

s
5 (c

pa
1 r

y
c

py
1 r
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c
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c
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) log(T/T

trip
)� R
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log( p

a
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trip
)� r
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R

y
log( p

y
/p

trip
) 1 r

y
s

0y
� r

s
s

0s
,

is invariant under adiabatic and reversible transformations.

Subtracting rt s0y, dividing by cpa, exponentiating, and

multiplying by T trip( p0/ptrip)Ra/cpa produces another in-

variant, which we call the liquid-water potential tem-

perature:
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This formulation has the benefit of taking a simple form

and reducing to the potential temperature for dry air. If

rs 5 0, as is the case in the simulations of shallow con-

vection presented here, then
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