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ABSTRACT

The entropy budget has been a popular starting point for theories of the work, or dissipation, performed
by moist atmospheres. For a dry atmosphere, the entropy budget provides a theory for the dissipation in
terms of the imposed diabatic heat sources. For a moist atmosphere, the difficulties in quantifying irrever-
sible moist processes or the value of the condensation temperature have so far frustrated efforts to construct
a theory of dissipation. With this complication in mind, one of the goals here is to investigate the predictive
power of the budget of dry entropy (i.e., the heat capacity times the logarithm of potential temperature).

Toward this end, the dry-entropy budget is derived for an atmosphere with realistic heat capacities and
a solid-water phase, features that were absent from some previous studies of atmospheric entropy. It is
shown that the dry-entropy budget may be interpreted as the sum of sources and sinks from six processes, which
are, in order of decreasing magnitude, radiative cooling, condensation heating, sensible heating at the surface,
wind-generated frictional dissipation, lifting of water, and transport of heat from the melting line to the upper
troposphere. This picture leads to an alternative explanation for the low efficiency of the moist atmospheric
engine.

Numerical simulations are presented from a new cloud-resolving model, Das Atmosphärische Modell,
which was designed to conserve energy and close the dry-entropy budget. Simulations with and without
subgrid diffusion of heat and water are compared to investigate the impact of subgrid parameterizations on
the terms in the dry-entropy budget. The numerical results suggest a particularly simple parameterization
of wind-generated dissipation that appears to be valid for changes in sea surface temperature and mean
wind. The dry-entropy budget also points to various changes in forcings and parameterizations that could
be expected to increase or decrease the wind-generated dissipation.

1. Introduction

To motivate the study of the entropy budget, con-
sider first an enclosed, dry atmosphere. For an enclosed
atmosphere in a steady state, the sum of all the entropy
sources must be zero (here, “sources” is shorthand for
sources and sinks). In the case of an enclosed, dry at-
mosphere, all of the entropy sources are simply heat
sources divided by the temperature. For example, pos-
sible heat sources include radiation (Q), conduction of
heat (�� • J, where J is the conductive heat flux), and
the anemonal dissipation (D).1 A succinct statement

of the steady-state entropy budget for a dry atmo-
sphere is

lim
T→�

1
T �

0

T

dt� dx dy dz �Q

T
�

� � J
T

�
D

T� � 0, �1�

where the spatial integral is taken over a closed volume
(i.e., u � 0 at the spatial boundaries). From here on, this
time-averaged volume integral will be denoted by a
subscript V,

�
V

� lim
T→�

1
T �

0

T

dt� dx dy dz, �1�

and an integral with a subscript S will denote a time-
averaged integral over the surface boundary. Integrating
by parts, the dry-atmospheric entropy budget becomes

�
V
�Q

T
�

J � �T

T2 �
D

T� � �
S

Jz

T
� 0, �2�

1 Here and throughout, the term “anemonal dissipation” refers
to the heating caused by the viscous dissipation of eddies cascad-
ing down from the macroscopic motions of the atmosphere. In
contrast, the term “precipitation dissipation” refers to the fric-
tional heating performed by hydrometeors as they fall relative to
the air with a speed equal to their terminal velocity and a force
equal to their weight.
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where the second term in (1) has yielded an entropy
term from conduction in the bulk (i.e., the interior of
the closed volume) plus an entropy source from sen-
sible heating at the surface. Assuming that local tem-
perature gradients are sufficiently small, then the sec-
ond term is negligible and may be set to zero.2 Because
the lapse rate is dry adiabatic and the prescribed heat-
ing Q and surface flux Jz are given, the surface air
temperature is all that is needed to evaluate the first
and final terms. Eq. (2) then yields a value for the third
term, which, when multiplied by a reasonable estimate
of the effective dissipation temperature, gives an esti-
mate of the anemonal dissipation. In a steady state, the
total kinetic energy is constant, so the kinetic-energy
sink �VD equals the kinetic-energy source ��Vu • �p.
In the hydrostatic limit, this equals the buoyancy flux
�V	wB, where B � g(	 � 	)/	 and the bar denotes a
horizontal average. We may then approximate the con-
vective buoyancy fluxes as

�
V

�wB 
 �Tdiss�
V
�Q

T
�

J � �T

T2 �� Tdiss�
S

Jz

T
, �3�

where Tdiss is the effective temperature of anemonal
dissipation. Therefore, the entropy budget reveals in-
formation about the product of vertical velocity and
buoyancy and, more generally, about the vigor of con-
vection. Unfortunately, a similar derivation of the
anemonal dissipation in a moist atmosphere has proved
far more elusive.

Many of the previous studies on entropy in a moist
atmosphere have made use of one of two different ap-
proximations. Both of these approximations treat the
entropy budget of a moist atmosphere as equal to the
entropy budget of a dry atmosphere plus an additional
heating term corresponding to water vapor. The differ-
ence between the two approaches—the “bulk-heating
approximation” and the “surface-heating approxima-
tion”—is in the different choice of temperature used to
divide this external heating to calculate an entropy
source. In the bulk-heating approximation, the latent
heat of water vapor is counted as “added” to the atmo-
sphere only upon condensation in the bulk, and all
other entropy sources from moist processes are as-
sumed to be negligible (Shaw 1923; Lorenz 1967;
Peixoto et al. 1991). When viewed this way, the effect of
condensation is no different than an external heating

source �Lee, where Le is the latent enthalpy of evapo-
ration and e is the evaporation rate in the bulk, which is
negative for condensation. Because this heat is added at
the effective condensation temperature Tcond, it pro-
duces entropy at the rate �Lee/Tcond. This leads to the
approximate bulk-heating entropy budget

�
V
�Q

T
�

Le

T
�

J � �T

T2 �
D

T� � �
S

Jz

T
� 0. �4�

The task of calculating the anemonal dissipation via Eq.
(4) reduces, then, to an estimation of the effective con-
densation temperature.

In the surface-heating approximation, the latent heat
of water vapor is counted as “added” to the atmosphere
upon evaporation from the surface, and, again, all other
entropy sources from moist processes are assumed to
be negligible (Rennó and Ingersoll 1996; Emanuel and
Bister 1996; Craig 1996). Therefore, the entropy source
Ledz

� /Tsurf is added to the entropy budget, where dz
� is

the vertical component of the water vapor diffusion flux
and Tsurf is the surface air temperature. This leads to
the approximate surface-heating entropy budget

�
V
�Q

T
�

J � �T

T2 �
D

T�� �
S
�Led�

z

T
�

Jz

T�� 0. �5�

On its face, this approximation is more appealing than
the bulk-heating approximation because the dissipation
can be obtained from Eq. (5) without needing to esti-
mate the effective condensation temperature.

It is clear that although both approximations may be
wrong, they cannot both be right. If both approxima-
tions are applied to the same atmosphere in an effort to
calculate the anemonal dissipation, then the approxi-
mate surface-heating budget will yield an estimate of
dissipation that is larger by the amount

TdissLed�
z� 1

Tcond
�

1
Tsurf

�.

Here, use has been made of the fact that ��Ve � �S dz
�

and that Le does not vary significantly with tempera-
ture. Assuming 100 W m�2 of latent heat flux, a 300-K
surface air temperature, a 280-K effective condensation
temperature, and a 280-K effective dissipation tem-
perature, this amounts to a difference of 7 W m�2. This
is a large difference when compared to numerical esti-
mates of moist radiative–convective equilibrium (RCE)
anemonal dissipation on the order of 1.0 to 1.5 W m�2

(Goody 2000; Pauluis et al. 2000) and estimates of glob-
al anemonal dissipation in the range of 2 to 10 W m�2

(Sverdrup 1917; Brunt 1926; Lettau 1954; Holopainen
1963; Oort 1964; Kung 1966; Peixoto et al. 1991; Boville
and Bretherton 2003).

2 It is safe to ignore the conductive microlayer at the surface,
where this assumption does not hold, so long as we set the tem-
perature in the last term equal to the temperature just above the
microlayer. This is effectively what happens in numerical models
because the heat from the surface is deposited in the first layer,
which is much deeper than the microlayer.
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In fact, it has been shown that both of these approxi-
mations miss large entropy sources. In particular, the
surface-heating approximation omits the entropy
sources produced by precipitation dissipation, diffusion
of water vapor, and nonequilibrium phase changes
(Pauluis et al. 2000; Goody 2000; Pauluis and Held
2002a). The bulk-heating approximation omits the en-
tropy produced by precipitation dissipation and a term
that is proportional to the condensation rate times the
logarithm of total pressure (Pauluis and Held 2002b).
These additional terms are the same order of magni-
tude as the wind-generated dissipation term, so they
cannot be omitted from any analysis of the entropy
budget that seeks to specify the anemonal dissipation.
However, there are two exact budgets that share close
similarities to the surface-heating approximation and
the bulk-heating approximation: the exact entropy bud-
get and the exact dry-entropy budget, respectively. A
proper treatment of the entropy budget was given by
Pauluis (2000) and Pauluis and Held (2002a,b). The
dry-entropy budget (i.e., the budget for cp log �) was
discussed under the name of “potential entropy” in
Pauluis (2000). Like the surface-heating approximation,
the entropy budget contains a source corresponding to
the addition of latent heat at the surface temperature.
And, like the bulk-heating approximation, the dry-
entropy budget contains a source corresponding to the
addition of sensible heat at the condensation tempera-
ture.

The papers by Pauluis and Held (2002a,b) demon-
strated that the diffusion of water vapor and nonequi-
librium phase changes are two of the largest sources in
the entropy budget. Furthermore, the numerical simu-
lations presented in those papers showed that the pre-
cipitation dissipation is itself much larger than the
anemonal dissipation. This led to an explanation for the
smallness of anemonal dissipation in a moist atmo-
sphere as compared to a dry atmosphere: the entropy
sink produced by surface heating and radiative cooling
is relatively fixed and must be balanced by the sum of
entropy sources, which are dominated by the diffusion,
nonequilibrium phase changes, and precipitation dissi-
pation. This leaves little room for anemonal dissipation.
It was also shown by Pauluis and Held (2002b), through
a series of approximations, that the diffusion and
phase-change terms in the entropy budget may be re-
written, in a steady state, as a sum of terms involving
the condensation temperature. This effectively con-
verted their steady-state entropy budget into a steady-
state budget of dry entropy, although the connection to
dry entropy or “potential entropy” was not explicitly
stated there.

In this paper, the emphasis will be on the dry-entropy

budget. Section 2 introduces the governing equations,
which will be used in both the analytical analysis and
the numerical simulations. In contrast to the deriva-
tions of Pauluis and Held (2002a,b), these equations
include a solid-water phase and realistic heat capacities
for the various phases of water. Section 3 introduces the
use of integral equations as a way to derive global con-
straints. This technique is utilized in section 4 to derive
the steady-state dry-entropy budget for a moist atmo-
sphere and to demonstrate its connection to the steady-
state entropy budget. In section 5, a new cloud-
resolving model is introduced and the entropy budgets
for various radiative–convective equilibrium simula-
tions are presented. In addition to including ice and
realistic heat capacities, these simulations are three-
dimensional and use interactive radiation, as compared
to the simulations presented by Pauluis and Held
(2002a,b), which used two-dimensional domains and
Newtonian cooling. Despite these model differences,
the values of precipitation and anemonal dissipation
are shown to be in good agreement. However, the in-
clusion of ice introduces a source of dry entropy that,
although small, cannot be ignored in a quantitative
analysis. Section 6 presents an analysis and discussion
of the dry-entropy budget. In this section, the steady-
state dry-entropy budget is rewritten to eliminate the
precipitation dissipation. The anemonal dissipation is
then shown to be the largest of three dry-entropy
sources that must balance the sink produced by con-
densation, sensible heating, and radiation. In addition
to the anemonal dissipation, these include an “eleva-
tor” term corresponding to the lifting of water and a
“conductor” term corresponding to the fuse–melt cycle
in the upper troposphere. This formulation of the dry-
entropy budget leads to an alternative explanation for
the smallness of anemonal dissipation and allows for
qualitative predictions of the change in anemonal dis-
sipation under various conditions. Finally, section 7
concludes with a brief summary.

2. Governing equations

In the following equations, we will use an index no-
tation in which summation of repeated indices is im-
plied, Latin indices range over the three spatial dimen-
sions (with index values 1, 2, and 3 corresponding to
directions x, y, and z), and Greek letters range over
space and time (with index values 0, 1, 2, and 3 corre-
sponding to directions t, x, y, and z). In this notation,
the four-vector velocity u
 has components (u0, u1, u2,
u3) � (1, u, �, w). The utility of this definition comes
from the fact that the tendency and flux divergence of
any specific quantity
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�

�t
��X� � � � ��uX�

can be written as the four-divergence,

����u�X�.

Consider an atmosphere with four components: dry
air, water vapor, liquid water, and solid water. Dry air
and water vapor will be treated as ideal gases; liquid
and solid water will be approximated as phases with
zero specific volume. Because the specific volume of
condensed water is about a thousand times smaller than
that of either air or vapor, this is a good approximation.

Because we will work with mass fractions (mass of
component per mass of moist air) instead of mixing
ratios (mass of component per mass of dry air), fre-
quent use will be made of an unconventional, but con-
venient, definition of the parameter �:

� � ma �m� � 1,

where ma and m� are the molar masses of dry air and
water, respectively. The traditional definition of �,
when working with mixing ratios, is m� /ma. It is a mere
coincidence that, with the earth’s composition of dry
air, both of these expressions equal about 0.6. Given
this definition of �, the partial pressures of dry air and
water vapor are

pa � �1 � q� � ql � qs��RaT,

p� � q��R�T, and

R� � �1 � ��Ra,

where q� is the water-vapor mass fraction, ql is the liq-
uid-water mass fraction, qs is the solid-water mass frac-
tion, Ra is the specific gas constant for dry air, and R� is
the specific gas constant for water vapor. The total pres-
sure of a parcel is the sum of these partial pressures,

p � Rm�T and

Rm � �1 � �q� � ql � qs�Ra,

where Rm is the specific gas constant of moist air.
The four components—air, vapor, liquid, and solid—

will be given constant specific heats at constant volume:
c�a, c��, c�l , and c� s, respectively. The constant-volume
specific heat of moist air is

c�m � �1 � q� � ql � qs�c�a � q�c�� � qlc�l � qsc�s,

and the related specific heat capacities at constant pres-
sure are

cpa � c�a � Ra, cp� � c�� � R�, and cpm � c�m � Rm,

for dry air, water vapor, and moist air, respectively. In
previous studies of the entropy budget using cloud-
resolving simulations (Pauluis 2000; Pauluis and Held

2002a,b), the values of cp�, c�l, and c�s were set to zero
to justify the use of a temperature-independent latent
heat. However, setting cp� to zero implies that the con-
stant-volume heat capacity of water vapor is negative,
which means that water vapor at constant volume will
warm up as it loses energy and get colder as heat is
added. This unphysical peculiarity is avoided here by
using a numerical model with realistic values of the heat
capacities.

Three diffusion fluxes will be used, each of which has
units of kg m�2 s�1. These are the diffusion fluxes of
water vapor d�, liquid water dl, and solid water ds. For
precipitation, dl and ds encompass the flux associated
with the hydrometeors’ terminal velocities.

One approximation that will be used is to neglect the
momentum and kinetic energy associated with the dif-
fusion fluxes of water. In particular, the velocities of
water vapor, liquid water, and solid water are

v� � u �
d�

q��
,

vl � u �
dl

ql�
, and

vs � u �
ds

qs�
,

so the true specific momenta are v�, vl, and vs, and the
true specific kinetic energies are �2

� /2, �2
l /2, and �2

s/2.
However, the equations are greatly simplified by treat-
ing the specific momentum of all water as u. With this
approximation, water vapor advects momentum den-
sity q� 	u with velocity v�, and similarly for liquid and
solid water. In addition, the kinetic-energy density of a
moist parcel is 	u2/2 regardless of any water content.

Note that the neglect of a hydrometeor’s free-fall
kinetic energy is well justified when compared to the
magnitudes of other terms in the energy and entropy
budgets. The kinetic energy exported out of the atmo-
sphere by hydrometeors falling through the lower
boundary can be estimated by assuming 100 W m�2 of
evaporation at the surface, which corresponds to 4 �
10�5 kg m�2 of water vapor, and a terminal velocity of
10 m s�1. The resulting export of kinetic energy in a
steady state is

�4 � 10�5� �
1
2

� 102 
 2 � 10�3W m�2.

This is a negligible power density compared to the pro-
cesses of interest to us. For example, given an effective
fall height of 104 meters, precipitation dissipation is

�4 � 10�5� � 9.8 � 104 
 4 W m�2.
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Because the wind-generated dissipation is also ex-
pected to be of this order of magnitude, the export
of kinetic energy by precipitation will not enter the

dominant balance that sets the anemonal dissipa-
tion.

The governing equations are

����1 � q� � ql � qs��u�� � 0
���q����

�� � e
���ql��l

�� � �e � m
���qs��s

�� � �m
����1 � q� � ql � qs��u�u� � ���q����

�u� � ���ql��l
�u� � ���qs��s

�u� � �g � �p � � � 	

����1 � q� � ql � qs��u�Ea
tot� � ���q����

�E�
tot� � ���ql��l

�El
tot� � ���qs��s

�Es
tot� � Q � � � �pau� � � � �p�v��

� � � �u � 	� � � � J.

Here, e is the evaporation rate in the bulk with dimen-
sions of mass per volume per time; negative values of e
correspond to condensation. Similarly, m is the melting
rate in the bulk. The viscous stress tensor is represented
by �, J is the conductive flux of sensible heat, and the
variable Q is the radiative heating per volume. The first
four equations are the continuity equations for dry air,
water vapor, liquid water, and solid water, respectively.
In the momentum equation, water transports only the
momentum corresponding to the dry-air velocity, as
discussed above. The final equation is the budget for
total energy, where the specific total energies for dry
air, water vapor, and liquid water are

Ea
tot � c�a�T � Ttrip� �

1
2

u2 � 


E�
tot � c���T � Ttrip� �

1
2

u2 � 
 � E0�

El
tot � c�l�T � Ttrip� �

1
2

u2 � 


Es
tot � c�s�T � Ttrip� �

1
2

u2 � 
 � E0s.

Here, � � gz is the specific gravitational potential en-
ergy, Ttrip � 273.16 K is the triple-point temperature,
E0� is the specific internal energy of water vapor at the
triple point, and �E0s is the specific internal energy of
ice at the triple point. The governing equations can be
rearranged to give

����u�� � �� � �d� � dl � ds�, �6�

���q��u�� � e � � � d�, �7�

���ql�u�� � �e � m � � � dl, �8�

���qs�u�� � �m � � � ds, �9�

����u�u� � �g � �p � � � 	 � �i��d�
i � dl

i � ds
i�u�, and

�10�

����u�Etot� � Q � � � �pu� � � � �u � 	� � � � J

� � � ��E�
tot � R�T�d�� � � � �El

totdl�

� � � �Es
totds�, �11�

where Etot � c�m(T � Ttrip) � 1⁄2u2 � � � q�E0� �
qsE0s.

3. Integral equations

Before we discuss the integral-equation approach to
entropy, it is useful to recall the standard method for
deriving the entropy budget. The specific entropies of
dry air, water vapor, liquid water, and solid water are

sa � cpa log�T�Ttrip� � Ra log�pa�ptrip�, �12�

s� � cp� log�T�Ttrip� � R� log�p� �ptrip� � s0�,

�13�

sl � c�l log�T�Ttrip�, and �14�

ss � c�s log�T�Ttrip� � s0s, �15�

where s0� � E0� /Ttrip � R�, s0s � E0s /Ttrip, and ptrip �
611.65 Pa is the triple-point pressure. Using the four-
vector notation, the differential entropy equation
can then be written as �
[(1 � q� � ql � qs)	u
sa] �
�
(q�	�


� s�) � �
(ql 	�

l sl) � �
(qs 	�


s ss) � Entropy
sources. In a steady state with u � 0 at the boundaries
and diffusion fluxes zero at all boundaries except the
lower boundary, integrating over a closed volume
yields

�
V

Entropy sources � �
S

�d�
zs� � dl

zsl � ds
zss� � 0.

�16�
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The standard approach is to catalog all the local en-
tropy sources and sinks and insert them into the above
equation to get the entropy budget.

There are a couple important observations to make
about the entropy budget. First, the entropy budget
does not contain any new information that is not al-
ready contained within the differential governing equa-
tions and the boundary conditions. This fact is some-
times obscured by the standard approach of cataloging
entropy sources and sinks without direct reference to
the governing equations. Second, the entropy budget in
Eq. (16) is a global statement about steady-state solu-
tions, so it contains far less information than the differ-
ential equations. On the other hand, there are an infi-
nite number of integral equations that can be derived,
the full set of which contains the same information as
the differential governing equations and boundary con-
ditions.

An alternative approach to cataloging entropy
sources is to use the governing equations directly. In
this method, we begin with any specific quantity, mul-
tiply by 	u
, take the space–time divergence �
, and
integrate over space and time. Assuming that the dry-
air velocity u is zero on the spatial boundaries and a
true steady state has been achieved, then this integral is
guaranteed to be zero. The next step is to remove de-
rivatives from the integrand using the differential gov-
erning equations. The resulting equation is the global
relation corresponding to the chosen specific quantity.

As a simple example, consider the specific kinetic
energy u2/2. From the governing equations, we can de-
rive the differential equation for kinetic energy,

����u�
1
2

u2� � �� � �1
2

u2�d� � dl � ds��� �g � u

� u � �p � u � F, �17�

where F � �� • � is the frictional force per volume.
Taking the integral over space and time yields

�
V

�g�w � u � �p � D� � 0,

where D � �� : �u is the anemonal dissipation per
volume. In a dry atmosphere, the integral of 	w is zero
because there is no net advective flux of mass in the
vertical. In the moist case, this same argument cannot
be made because of the diffusion and terminal-velocity
fluxes of water. Instead, we can make two separate
statements to the effect that there is no net vertical flux
of dry air and no net vertical flux of water in a steady
state:

�
V

�1 � q� � ql � qs��w � 0 and

�
V

�q� � ql � qs��w � �
V

�d�
z � dl

z � ds
z� � 0.

Adding these equations, we find that

�
V

�w � ��
V

�d�
z � dl

z � ds
z�.

Therefore, the integral of the kinetic-energy equation
can be written as

��
V

u � �p � �
V

�D � g � �d� � dl � ds��. �18�

In an atmosphere with a negligible net vertical diffusion
of water vapor, this states that the pressure work equals
the sum of anemonal dissipation and precipitation dis-
sipation.

4. The dry-entropy budget

The technique outlined in the previous section can be
used to find the entropy budget directly from the dif-
ferential equations. Naturally, the relevant specific
quantity is the specific entropy of moist air. This can be
derived from Eqs. (12)–(14) as

s � �1 � q� � ql � qs�sa � q�s� � qlsl � qsss

� cpm log�T�T0� I
� Rm log�p�p0� II
� Ra�1 � �q� � ql � qs� log�1 � �q� � ql � qs� III
� Ra�1 � ��q� log��1 � ��q�� IV
� Ra�1 � q� � ql � qs� log�1 � q� � ql � qs� V
� q�s0� VI
� qss0s. VII

�19�

Although this entire expression for s could be used to
derive an integral equation, this is not necessary. In-
stead, we will focus on the dry-entropy budget, which
follows directly from the sum of terms I and II. Note
that the sum of terms I and II is the specific entropy of
a dry gas with the same temperature, pressure, heat
capacity, and gas constant as the moist air: thus the
term “dry entropy.” Other integral equations may be
derived from the remaining terms. As we will soon see,
the integral equation associated with the sum of terms
III and IV implies a constraint on the effective pressure
of condensation. Terms V, VI, and VII can be used
independently to find integral equations that are a sub-
set of those derived in appendix B.
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Integrating the four-divergence of 	u
 times the spe-
cific dry entropy (the sum terms I and II) gives

�
V

����u��cpm log�T�T0� � Rm log�p�p0��� � 0. �20�

We will leave the values of p0 and T0 unspecified for the
time being; a convenient choice of values will make
itself manifest shortly. As shown in appendix A, the
integrand in Eq. (20) can be rewritten with help from
the governing equations to yield

�
V
��cp� � c�l�e log� T

T0
� � �c� l � c�s�m log� T

T0
� � R��e � � � d�� log� p

p0
� �

Q

T
�

Lee

T
�

Lmm

T
�

� � J
T

�
D

T

�
g � �d� � dl � ds�

T �� �
S

�cp�d�
z � c�ldl

z � c�sds
z� log�T�T0� � 0, �21�

where

Le � E0� � R�T � �c�� � c�l��T � Ttrip�, �22�

Lm � E0s � �c�l � c�s��T � Ttrip�. �23�

This is the steady-state dry-entropy budget. The deri-
vation given here is similar to the method used in Pau-
luis (2000), but this budget differs by the presence of
the two melting terms and the diffusion of water up a
geopotential gradient. In simulations with subgrid dif-
fusion of water vapor, this latter term cannot be ne-
glected. This budget also differs from the steady-state
form of the budget studied by Pauluis and Held
(2002a,b) because it includes the terms proportional to

the difference in specific heat capacities, the term cor-
responding to the latent heat of melting, and the term
corresponding to the diffusion of water vapor up the
geopotential gradient.

Recall that T0 and p0 are arbitrary. It is particularly
convenient to choose p0 and T0 to be the average pres-
sure and temperature at the surface. Neglecting varia-
tions of surface temperature from the average value,
the surface integral is zero. By neglecting variations of
surface pressure from the average value and assuming
that the diffusion flux of water vapor d� is nonnegligible
only very close to the surface, the remaining terms in-
volving d� are zero as well. This leads to an approxima-
tion of the dry-entropy budget

�
V
��cp� � c�l�e log� T

T0
�� �c�l � c�s�m log� T

T0
�� R�e log� p

p0
��

Q

T
�

Lee

T
�

Lmm

T
�

� � J
T

�
D

T
�

g � �dl � ds�

T �� 0

�24�

that is valid for p0 and T0 equal to the surface values
and for d� nonzero only near the surface.

It is possible to demonstrate the connection between
the steady-state dry-entropy budget in Eq. (21) to the
steady-state entropy budget by using the integral equa-
tion associated with the sum of terms III and IV in Eq.
(19). As shown in appendix B, they give us the follow-
ing relation:

�
V

R��e � � � d�� log�p�

p � � 0. �25�

When subtracted from (21), it converts the logarithm

of total pressure to a logarithm of the partial pres-
sure of water vapor. Now, let us use the freedom in
T0 and p0 to choose T0 � Ttrip and p0 � ptrip. Noting
that

�
Lee

T
� �

e

T
�E0� � R�T � �c�� � c�l��T � Ttrip��

� R�e log� exp�E0� � �c�� � c�l �Ttrip

R�
� 1

Ttrip
�

1
T���

� es0� ,

we may rewrite the terms involving e as
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�
V

��cp� � c� l�e log� T

Ttrip
� � R��e � � � d� log� p�

ptrip
� �

Lee

T
�

� �
V

�R�e log�ptrip

p�

� T

Ttrip
�

cp��c�l

R�

exp�E0� � �c�� � c�l�Ttrip

R�

� 1
Ttrip

�
1
T
���

� R�� ��d� log� p�

ptrip
��� R�d� � � logp� � es0��

� �
V

��R�e log� p�

p�*
, l
� � R�d� � � logp��� �

S

d�
z��R� log� p�

ptrip
� � s0��.

In the last line, we have used the fact that the saturation vapor pressure with respect to liquid water is

p�*
, l � ptrip� T

Ttrip
�

cp��c� l

R�
exp�E0� � �c�� � c� l�Ttrip

R�
� 1

Ttrip
�

1
T��.

Similarly, it is straightforward to show that the terms involving m may be written as

�
V
��c�l � c�s�m log� T

Ttrip
� �

Lmm

T �� �
V

R�m log�p�*
,s

p�*
,l� � �

S

ds
zs0s,

where

p �*
, s � ptrip� T

Ttrip
�

cp��c�s

R� exp�E0� � E0s � �c�� � c�s�Ttrip

R�
� 1

Ttrip
�

1
T��

is the saturation vapor pressure with respect to solid water. Substituting these expressions into the dry-entropy
budget results in

�
V
�Q

T
�

D

T
�

g � �d� � dl � ds�

T
�

� � J
T

� R�e log� p�

p�*
, l� � R�m log�p�*

, l

p�*
, s� � R�d� � � logp��

� �
S

�s�d�
z � sldl

z � ssds
z� � 0. �26�

This is the steady-state entropy budget. Because the
steady-state dry-entropy budget in Eq. (21) is valid for
any choice of p0 and T0, and because p0 and T0 were
restricted to lie on the phase boundary in the process of
deriving Eq. (26), the steady-state entropy budget in
Eq. (26) may be considered a special case of (21). By
restricting p0 and T0 to the phase boundary, we have
recovered the familiar terms corresponding to nonequi-
librium phase changes and the diffusion of water vapor
down a partial-pressure gradient. This budget differs
from the one studied by Pauluis and Held (2002a,b) by
the inclusion of the melting term and the term corre-
sponding to the diffusion of water vapor up the geopo-

tential gradient. It also differs in the implicit definitions
of the saturation vapor pressures, which depend on the
difference in specific heat capacities between the re-
spective phases.

5. Numerical results

The model used to investigate the implications of Eq.
(21) is Das Atmosphärische Modell (DAM), which was
built by the author with the specific goal of faithfully
integrating the governing equations laid out in section
2. DAM is a three-dimensional, finite-volume, fully
compressible, nonhydrostatic, cloud-resolving model
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with prognostic momentum, virtual potential tempera-
ture, total mass, and masses of each of the water com-
ponents. DAM uses height as the vertical coordinate in
an Arakawa C-type grid with uniform horizontal spac-
ing and variable vertical spacing. The upper and lower
boundary conditions are that of a no-slip, rigid lid, and
the horizontal domain is doubly periodic.

Advection is performed in a conservative-flux form.
DAM may be run with any advection order subject to
the condition that the stencil not extend past adjacent
subdomains. For the simulations presented in the next
section, third-order advection is used. A positive-
definite flux correction is used for the water densities
following Smolarkiewicz (1989). To deal with acoustic
modes and fast gravity waves, DAM uses a conserva-
tive split-time scheme whereby the terms responsible
for the acoustic and gravity modes are integrated ex-
plicitly with a small time step (Klemp et al. 2007). In the
small time step, terms with horizontal derivatives are
integrated with forward–backward differencing. Be-
cause the vertical grid spacing is typically much smaller
than the horizontal grid spacing, terms responsible for
vertical sound waves are treated implicitly. The large
time steps are integrated in time using a second-order
Runge–Kutta scheme.

Microphysics is treated with the Lin–Lord–Krueger
six-class microphysics scheme (Lin et al. 1983; Lord et
al. 1984; Krueger et al. 1995). The six classes are water
vapor, cloud liquid, cloud ice, rain, snow, and graupel.
Interactive radiation was used with the shortwave flux
set equal to the diurnally averaged radiance at the
equator on the first of January. The interactive radia-
tion scheme is from the National Center for Atmo-
spheric Research (NCAR) Community Climate Model
(CCM; Kiehl et al. 1998). A Smagorinsky model is used
to determine the eddy diffusivity. Surface fluxes are
determined by a simple bulk parameterization in which
the near-surface velocity is replaced by a fixed back-
ground velocity. This background velocity has no effect
on the dynamics other than through the parameteriza-
tion of surface fluxes.

Eight simulations of RCE over the ocean were per-
formed with DAM to investigate the dry-entropy bud-

get. The two parameters that vary among the runs are
the background wind speed used in the bulk surface-
flux parameterization (5 and 10 m s�1) and the sea sur-
face temperature (300 and 303 K). In four of the runs,
the eddy viscosity was used to diffuse momentum, but
there was no subgrid diffusion of sensible heat or water.
The other set of four runs was identical except the eddy
diffusivity was also used to model subgrid diffusion of
heat and water. The simulations were run at a 2-km
horizontal resolution on a doubly periodic, horizontal
domain with 32 km per side. This is a relatively small
domain, but previous studies have found no difference
in the statistics of radiative–convective equilibrium on a
60-km-wide domain versus a 120-km-wide domain
(Robe and Emanuel 1996; Tompkins 2000). The 64 ver-
tical grid points were smoothly spaced from just under
100 m near the surface, to a constant 500 m through
most of the vertical range, to just over 1000 m near the
top, for a total of 32 km in the vertical.

Each simulation was run to a steady state, which was
confirmed by a zero rate of change in total energy. The
simulations were then run for 8 months of model time,
during which statistics were collected. In each case, the
majority of the clouds detrain at or below the melting
line at a height of about 5 or 6 km. A smaller number
of deep convective plumes reach up to a maximum
height between 15 and 17 km, depending on the sea
surface temperature and background wind speed. Start-
ing as updrafts in the subcloud layer, the fastest deep
convective plumes accelerate from velocities around 10
m s�1 at the freezing line to velocities between 20 and
25 m s�1 at a height between 10 and 15 km.

In sections 3 and 4, integral equations were derived
by taking averages over infinite time. In practice, the
integral equations will be valid so long as the terms are
averaged over a sufficiently long period of a steady
state. The time period of 8 months was chosen to err on
the side of caution. The energy budgets over this time
period are shown in Table 1. The columns are labeled
by the background wind speed used for the surface-flux
parameterization (5 or 10 m s�1) and the sea surface
temperature (300 or 303 K). The first four columns are
from the simulations without any subgrid diffusion of

TABLE 1. The energy budget (W m�2), without (w/o diff) and with (w/diff) diffusion of heat and water.

5, 300 5, 303 10, 300 10, 303 5, 300 5, 303 10, 300 10, 303

w/o diff w/o diff w/o diff w/o diff w/ diff w/ diff w/ diff w/ diff

Q �110.00 �130.59 �118.62 �139.69 �108.71 �129.30 �116.97 �137.88
J z

surf 7.42 9.67 3.25 5.13 7.20 9.44 3.19 5.05
h�d�

z 107.00 126.76 120.59 141.37 105.96 125.76 118.98 139.55
hldl

z �4.49 �5.88 �5.24 �6.81 �4.45 �5.84 �5.17 �6.72
Sum �0.08 �0.04 �0.03 0.00 0.00 0.06 0.04 �0.01
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sensible heat and water; the last four columns report
results from simulations that do use subgrid diffusion of
scalars. The average rate of change in the total energy
of the atmosphere over this period for each of the simu-
lations is less than 0.1 W m�2. When integrated over
several 1-month periods, the simulations exhibit a root-
mean-square change in total energy of about 0.4 W
m�2, which suggests that a smaller time integration
might have been sufficient considering that the term of
interest—the anemonal dissipation—is a few times
larger than this.

The dry-entropy budgets for the eight runs are shown
in Table 2 in units of mW m�2 K�1. The values of p0

and T0 that are used in calculating the table are the
mean surface pressure and mean surface air tempera-
ture for each of the runs. The values are arranged in
order of decreasing magnitude, from the large radiative
sink to the small source that is proportional to log(T/
T0) at the surface. For a sufficiently long average over
time, the sum of the terms in Table 2 should be zero.
However, the sums range from 0.6 to 1.2 mW m�2 K�1,
indicating that there is some small bias remaining even
after an 8-month integration. This may reflect the fact
that some aspects of the RCE are still not in equilib-
rium even after 8 months. For example, water vapor in
the stratosphere had not yet equilibrated by the end of
the 8 months, and there are some indications that the
radiative forcing in parts of stratosphere had not yet
reached a steady value. Fortunately, the summation er-
rors in the dry-entropy budgets are small compared to
the sources from anemonal dissipation, which take val-
ues between 4.6 and 6.5 mW m�2 K�1.

6. Analysis and discussion

It merits a moment to consider the physical interpre-
tation of each of the terms in Eq. (21) and Table 2. The

three largest terms correspond to the heat sources from
radiation, condensation, and sensible heat, respectively.
The D/T term comes from the addition of heat by the
dissipation of wind shear by viscosity. Of course, in a
numerical simulation, the dissipation that is measured
is really the transport of kinetic energy down to subgrid
scales. As long as the grid scale is within the inertial
subrange, which is the case in large-eddy simulations,
this power will equal the dissipation by viscosity. With
currently available computing power, and with the re-
quirement that the simulations be run to a steady state,
the simulations presented here qualify as very-large-
eddy simulations; in other words, the grid scale is not
within the inertial subrange. This means that the 2-km
resolution used here may not be small enough for the
dry-entropy budget to have achieved convergence, al-
though this same caveat applies to any study using
cloud-resolving models with grid spacing greater than
roughly 250 m (Bryan et al. 2003).

The term proportional to the gravitational accelera-
tion times the vertical d fluxes is the precipitation dis-
sipation term, corresponding to the heating produced
by the conversion of gravitational potential energy into
heat via friction as the hydrometeors fall. Recall that
the d vectors include diffusive fluxes in addition to the
hydrometeor terminal velocities. In the simulations
without diffusion of water, d� is zero except at the sur-
face, and dl and ds are equal to the terminal-velocity
fluxes. In those simulations, the d� term may be ne-
glected. The term involving the logarithm of pressure is
closely related to the precipitation dissipation; its
meaning will be discussed shortly.

There are three terms that are proportional to the
specific heat capacities of water. These terms corre-
spond to the addition or removal of heat by water as it
moves up and down the atmosphere’s temperature gra-
dient. For example, liquid precipitation that is falling

TABLE 2. The dry-entropy budget (mW m�2 K�1).

5, 300 5, 303 10, 300 10, 303 5, 300 5, 303 10, 300 10, 303

w/o diff w/o diff w/o diff w/o diff w/ diff w/ diff w/ diff w/ diff

Q/T �402.6 �473.1 �432.2 �503.7 �397.9 �468.4 �426.4 �497.6
�Lee /T 375.0 438.6 418.5 484.8 373.7 437.8 415.7 481.7
�� • J/T 24.8 32.0 10.9 17.0 22.2 29.3 8.6 14.5
g • (d� � dl � ds) /T 11.5 13.9 12.6 15.3 11.1 13.4 12.1 14.6
�R�(e � � • d�) log( p/p0) �8.5 �10.7 �9.4 �11.9 �7.9 �10.0 �8.7 �11.0
(cp� � c� l)e log(T/T0) �7.1 �7.5 �7.3 �7.5 �7.6 �8.0 �7.7 �8.0
D /T 5.3 6.0 5.8 6.5 4.6 5.2 5.0 5.6
(c� l � c�s)m log(T/T0) 2.9 3.0 3.0 2.9 3.2 3.2 3.2 3.2
�Lmm/T �1.3 �1.3 �1.3 �1.3 �1.4 �1.4 �1.4 �1.4
�cp�d �

z � c�ld l
z � c�sd s

z�log�T�T0� 0.7 �0.3 0.4 �0.8 0.7 �0.3 0.4 �0.8
Sum 0.7 0.7 0.9 1.2 0.6 0.9 0.8 0.8
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toward the ground is moving up a temperature gradi-
ent. In the governing equations, it is assumed that the
precipitation immediately adjusts to the temperature of
the environment, so the precipitation must absorb sen-
sible heat as it falls. As the temperature of the precipi-
tation changes by dT, the atmosphere experiences a
heat source equal to �c� l dT. Therefore, the dry-
entropy source produced by a unit mass of liquid pre-
cipitation that initially forms at temperature T and exits
through the lower boundary at temperature T0 is

�
T

T0 � d�c� lT ��

T �
� c�l log�T�T0�.

In general, the sources and sinks for liquid water are
m � e in the bulk and dz

l at the lower boundary. This
leads to a net dry-entropy source of

�
V

�m � e�c� l log�T�T0� � �
S

dl
zc� l log�T�T0�.

Similar expressions apply to water vapor and solid wa-
ter, the sum of which yields the three terms involving
log(T/T0) in Eq. (21) and Table 2.

Although the net melting of water, �Vm, is zero, the
term ��VLmm /T is not. This stems from the fact that
liquid water often becomes supercooled in updrafts that
pass the melting line. The temperature at which liquid
water fuses is typically many degrees colder than the
temperature at which it melts. This suggests that there
should be a net transport of heat from the relatively
warm melting line (where water melts and absorbs la-
tent heat) to the relatively cool upper troposphere
(where water fuses and releases latent heat), which
would be a source of dry entropy. Indeed, this process
does move heat from warm to cold, and yet the numeri-
cal values in Table 2 for ��VLmm /T are negative, in-
dicating a sink. This apparent incongruity is resolved by
noting that the temperature dependence of Lm is
greater than that of 1/T. Using the expression for Lm in
Eq. (23), and using the fact that �Vm � 0, we see that

�
V
��

Lmm

T � � ��c� l � c� s�Ttrip � E0 s��
V

m

T
.

Because m is positive at high T and negative at low T,
the integral on the right is negative; because c�l is so
much larger than c�s, the term outside the integral is
positive. Therefore, the overall term is negative, in
agreement with the values in Table 2. Although this
term is a sink, the (c� l � c�s)m log(T/T0) term is a
source of greater magnitude, confirming our intuition
that the fuse/melt cycle should provide a net source of
dry entropy.

To gain some additional insight, it is useful to employ
effective temperatures where possible. For example,

the effective temperature of condensation may be de-
fined as

Tc �

�
V

Lee

�
V

Lee �T

,

which guarantees that the condensation source of dry
entropy may be written as (��V Lee)/Tc. In this way,
effective temperatures can also be defined for radia-
tion, sensible heating, anemonal dissipation, and pre-
cipitation dissipation. Table 3 shows these terms in this
disaggregated fashion. We can see that the anemonal
dissipation ranges from 1.3 to 1.8 W m�2 and the pre-
cipitation dissipation ranges from 3.0 to 4.2 W m�2.
These values are in excellent agreement with the three-
dimensional, cloud-resolving simulation of Pauluis et al.
(2000), in which values of 1.4 and 3.6 W m�2 were
obtained for the anemonal and precipitation dissipa-
tion, respectively. On the other hand, the simulations of
Pauluis and Held (2002a) found that the anemonal and
precipitation dissipation were 1.0 and 3.7 W m�2, re-
spectively. That value of the anemonal dissipation is
outside the range found here, which may be explained
by details of their model. Unlike the model used here
and in Pauluis et al. (2000), the model used by Pauluis
and Held (2002a) was two-dimensional and used New-
tonian cooling instead of interactive radiation.

To tease out the effects of subgrid diffusion models
on the dry-entropy budget, four of the runs did not use
any subgrid diffusion of water or heat, whereas the
other four did. Comparing the simulations with and
without the diffusion of these scalars in Table 2, it is
clear that the largest changes in dry-entropy sources
and sinks occur for the sources and sinks with the larg-
est overall magnitudes: radiation, condensation, and
sensible heating. In each of the four pairs, the addition
of scalar diffusion leads to a decrease in the radiation
sink that more than compensates for the decrease in the
condensation and sensible heating sources. Therefore,
scalar diffusion causes a reduction in the net sink from
radiation, condensation, and sensible heating. It is clear
from Table 3 that the decrease in the radiation sink
with the addition of scalar diffusion stems not from a
change in effective temperature, but from a decrease in
the total energy flux. The simulations with scalar diffu-
sion are slightly warmer and moister throughout most
of the troposphere and at the surface, where surface
fluxes are subsequently suppressed.

With scalar diffusion, the dry-entropy source from
sensible heating is reduced for all four pairs of runs. As
seen from Table 3, this is only partly explained by a
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reduced sensible heat flux from the surface. In fact, the
larger contributor to the decrease in the sensible heat-
ing source of dry entropy is the large increase in effec-
tive temperature. In the runs without scalar diffusion,
the effective temperature of sensible heating is repre-
sentative of the surface air temperature, which is within
roughly 1 K of the imposed sea surface temperature. In
the runs with scalar diffusion, the effective tempera-
tures are much warmer than any temperature that is
physically present in the model—in one of the runs, the
effective temperature is almost 370 K.

These very high temperatures are consistent with the
model formulation, and yet are entirely unphysical. In
particular, large effective temperatures are produced
by the repeated diffusion of heat from cold air to warm
air. Mathematically, this may be shown by integrating
the dry-entropy source by parts,

�
V
��

� � J
T � � �

S

Jz

T
� �

V

J � �T

T2 ,

and then noting that the effective temperature of the
first term on the right-hand side is the surface air tem-
perature Tsurf. If the second term on the right were
zero, as it is in the simulations with no scalar diffusion,
then the effective temperature of sensible heating
would be Tsurf. However, with diffusion of sensible heat
in the bulk, the effective temperature becomes

TJ �
Tsurf

1 � Tsurf

�
V

J � �T�T2

�
S

Jz

,

which is greater than Tsurf if J points up the tempera-
ture gradient.

In reality, of course, molecular processes diffuse and
conduct heat down the temperature gradient. This ap-
parent contradiction may be better understood by con-
sidering the physical process that models of subgrid dif-
fusion are attempting to represent. Physically, the un-
resolved, subgrid turbulence in an unsaturated and
statically stable atmosphere will push parcels down
(up), causing them to warm (cool) adiabatically to a
temperature greater (less) than their new surroundings.
Turbulent mixing of the parcel with its new environ-
ment increases the temperature gradients to the point
where molecular diffusion and conduction can take
over and transport heat down the gradient. This process
is a net source of dry entropy. However, at larger scales,
the irreversible vertical exchange of two parcels in a
stably stratified troposphere effectively transports heat
from the higher and colder altitude (where a parcel of
cold environmental air is exchanged for a parcel that is
even colder due to adiabatic cooling) to the lower and
warmer altitude (where a parcel of warm environmen-
tal air is exchanged for a parcel that is even warmer due
to adiabatic warming). In the simulations, this process is
modeled by an energy flux equal to minus the turbulent
diffusivity times the gradient of the dry static energy,
which leads to a transport of heat from cold to warm at
the grid scales. This manifests itself in the model as a
net sink of dry entropy. Therefore, unlike the modeled
dry-entropy source from anemonal dissipation, which
should be equal to the physical source so long as the
grid scale is within the inertial subrange, the modeled
dry-entropy source from diffusion of heat in the bulk is

TABLE 3. The dry-entropy budget with the sources and sinks written as an energy flux (W m�2) over an effective temperature (K),
where applicable.

5, 300 5, 303 10, 300 10, 303 5, 300 5, 303 10, 300 10, 303

w/o diff w/o diff w/o diff w/o diff w/ diff w/ diff w/ diff w/ diff

Q/T �110.0/273.3 �130.6/276.1 �118.6/274.5 �139.7/277.3 �108.7/273.2 �129.3/276.0 �117.0/274.3 �137.9/277.1
�Lee/T 104.4/278.3 123.1/280.6 117.3/280.3 136.9/282.5 103.4/276.8 122.2/279.2 115.9/278.8 135.3/281.0
�� • J/T 7.4/299.1 9.7/301.8 3.3/299.7 5.1/302.6 7.2/324.1 9.4/322.1 3.2/369.6 5.0/347.8
g • (d� � dl � ds)/T 3.2/274.2 3.8/276.7 3.5/275.5 4.2/278.1 3.0/273.7 3.7/276.2 3.3/275.0 4.1/277.7
�R�(e � � • d�)

log(p /p0)
�0.0085 �0.0107 �0.0094 �0.0119 �0.0079 �0.0100 �0.0087 �0.0110

(cp� � c� l)e
log(T/T0)

�0.0071 �0.0075 �0.0073 �0.0075 �0.0076 �0.0080 �0.0077 �0.0080

D /T 1.5/276.5 1.7/278.3 1.6/276.0 1.8/278.4 1.3/275.8 1.5/277.6 1.4/274.9 1.6/277.2
(c�l � c�s)m

log(T/T0)
0.0029 0.0030 0.0030 0.0029 0.0032 0.0032 0.0032 0.0032

�Lmm/T �0.0013 �0.0013 �0.0013 �0.0013 �0.0014 �0.0014 �0.0014 �0.0014
(cp� d�

z � c� l dl
z

� c�sds
z)

log(T/T0)

0.0007 �0.0003 0.0004 �0.0008 0.0007 �0.0003 0.0004 �0.0008

Sum 0.0007 0.0007 0.0009 0.0012 0.0006 0.0009 0.0008 0.0008
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not even of the same sign as the true source at the scales
of molecular diffusion and conduction.

Now, let us consider the effect of using a subgrid
model of water-vapor diffusion. Because the specific
humidity decreases with height, models of subgrid dif-
fusion tend to move water vapor upward. This corre-
sponds to a physical process that takes place in two
steps. First, there is vertical eddy exchange: relatively
dry air from above gets pushed down, and vice versa.
Because there is no change in potential temperature,
there is no change in dry entropy. Second, the parcel
that has been displaced mixes with the environment,
whereupon molecular diffusion transports water vapor
from high partial pressures to low partial pressures. In
the entropy budget, the entropy increase from diffusion
down a partial-pressure gradient is captured explicitly.
In the dry-entropy budget, there is no explicit source
corresponding to this process. Instead, the effect of wa-
ter-vapor diffusion is felt through a decrease in the con-
densation temperature; for the same amount of con-
densation heating, this amounts to an additional source
of dry entropy. To see this effect on condensation tem-
perature, we can approximate Eq. (25) as

�
V

e log� q�

q�,surf
� � ��

V

d� � � log�q��, �27�

where q�,surf is the effective mass fraction of surface
air into which water vapor is diffused from the surface;
that is,

log�q�,surf� �

�
S

d�
z log�q��

�
S

d�
z

.

If there is no diffusion of water vapor in the bulk, then
the right-hand side of Eq. (27) is zero and the effective
mass-fraction of condensation must be equal to q�, surf.
In other words, the only way for water vapor to enter
and exit a Lagrangian parcel is by contact with the sur-
face or by phase change, so the average q� for one of
these processes must equal the average q� for the other.
By introducing a nonzero eddy diffusivity, water vapor
will diffuse down the gradient of q�, making the right-
hand side of Eq. (27) positive. Because the mean vol-
ume average of e is negative, the effective q� on the
left-hand side must be less than q�, surf. On average, q�

decreases with height both in the environment and
within convective plumes, so a smaller effective water-
vapor mass fraction of condensation implies that con-
densation is taking place at a lower effective tempera-

ture. Indeed, this prediction is born out by all four pairs
of simulations presented in Table 3.

To simplify the physical interpretation of the dry-
entropy budget, it is useful to combine several of the
terms. Ignoring terms that are second order in T /T0 �
1, which are on the order of a few tenths of one milli-
watt per square meter per Kelvin or smaller, it is pos-
sible to write

�
Le�T �e

T
� �cp� � c� l�e log� T

T0
�� �

Le�T0�e

T

�
Lm�T �m

T
� �c� l � c� s�m log� T

T0
�� �

Lm�T0�m

T
.

In other words, the source produced by the sensible
heating by water as it moves through the atmosphere’s
temperature gradients is, to a good approximation, can-
celed by the temperature variations of Le and Lm (Pau-
luis 2000).

The �Lm(T0)m/T term may be written as a sum of
contributions from melting and fusion by taking ad-
vantage of the fact that the local melting rate is max(0,
m) � (m � |m |)/2, and similarly for fusion. This allows
us to separate the effects of melting and fusion as

��
V

Lm�T0�m

T
� ��

V

Lm�T0��m � |m |�
2T

� �
V

Lm�T0��m � |m |�
2T

.

By defining effective temperatures of melting (Tm) and
fusion (Tf), using the fact that �V m � 0, and neglecting
terms that are second order in Tf /Tm � 1, this becomes

��
V

Lm�T0�m

T
�

Lm�T0�

Tm
2 �T�

V

|m |
2

, �28�

where �T � Tm � Tf is the temperature separation
between the melting and fusion. Because most of the
melting takes place within close proximity of the melt-
ing line, Tm may be approximated by 273 K. Note also
that �V |m | /2 is equal to the amount of water (in kilo-
grams per second) that participates in the fuse/melt
cycle. Equation (28) takes the same form as the con-
duction of sensible heat in the bulk: heat is transported
at a rate Lm(T0)�V |m | /2 across a temperature differ-
ence of �T. In effect, the fuse/melt cycle conducts heat
from the warm melting line to the colder upper tropo-
sphere. We may characterize this as the atmosphere’s
“conductor.”

The log(p) term may be rewritten (Pauluis 2000; Pau-
luis and Held 2002b) as
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��
V

R��e � � � d� log�p�p0� � ��
V

R����q��u�� log�p�p0�

� �
V

R�q��u � �p

p

� �
V

R�

Rm

q��u � g
T

. �29�

In the second line, the time derivative of pressure has
been neglected, and in the third line the hydrostatic
approximation has been used. In addition, it is possible
to manipulate the precipitation–dissipation dry-entropy
source as follows:

�
V

g � �d� � dl � ds�

T
� �

V

�p � �d� � dl � ds�

�T

� �
V

Rm� log�p�p0� � �d� � dl � ds�

� ��
V

Rm log�p�p0�� � �d� � dl � ds�

��
V

Rm log�p�p0�����q� � ql � qs��u��

� ��
V

�q� � ql � qs��u � �p

p

� ��
V

�q� � ql � qs��u � g
T

. �30�

In the first and sixth lines, we have used the hydrostatic
approximation. In the third line, we have used the as-
sumption that deviations of p from p0 are negligible at
the surface and that gradients of Rm are negligible. In

the fifth line, we have assumed that the time derivative
of pressure may be neglected. As discussed in section 4
and by Pauluis et al. (2000), the space–time integrals of
dz

� � dz
l � dz

s and (q� � ql � qs)	uz must be equal.
Therefore, the equality shown above guarantees that
the effective temperatures for these two processes are
the same. This is not an obvious fact because the tem-
peratures of humid updrafts may, in general, differ by
several degrees from the temperatures of precipitation-
laden downdrafts. Adding the terms from Eqs. (29) and
(30) gives

�
V

g � �d� � dl � ds�

T
� �

V

R�e log�p�p0� �

��
V

1
T

��1 � R� �Rm�q� � ql � qs��u � g. �31�

Because the pressure of a moist parcel is p � (1 �
�q� � ql � qs)Ra	T, the fractional difference in density
between a moist parcel and a dry parcel at the same
pressure and temperature is

� |p,T,moist � � |p,T,dry

�
� �1 � R� �Ra�q� � ql � qs,

where terms that are second-order in the mass fractions
have been neglected. Therefore, the right-hand side of
(31) is the work performed by the atmosphere in lifting
water, divided by the temperature. In other words, this
is the amount of the dry-entropy sink generated by ra-
diation, condensation, and sensible heating that is con-
sumed by the atmosphere’s need to act like an elevator,
lifting water through the gravitational field. As a short-
hand, we will refer to this as the atmosphere’s “eleva-
tor.”

The bulk-heating budget may now be approxi-
mated as

�
V 	Q

T
�

Le�T0�e

T
�

� � J
T

Rad �Cond �Sens Heating

�
D

T
Brakes

�
�ql � qs � �q� ��wg

T

Elevator

�
Lm�T0��T

Tm
2

|m |
2

Conductor

 � 0.

Here, we use the term “brakes” as a shorthand for
anemonal dissipation in reference to the role of friction
in slowing down the atmosphere’s motion. Note that
this budget differs from Eq. (4) by the temperature
independence of the latent heat of evaporation and the
presence of the elevator and conductor terms. Calcu-
lating these terms for the numerical simulations, we get
the dry-entropy budget in Table 4. As energy is moved
through the atmosphere from the earth’s surface to
outer space, a net sink of dry entropy is produced by

virtue of the fact that the temperatures at which the
energy is added as heat (by sensible heating and con-
densation) are higher than the temperature at which
the energy is removed (by radiation). This sink must be
canceled by the sum of the next three terms: the fric-
tional force acting to slow down the winds (the brakes),
the work performed in lifting water (the elevator), and
the transport of heat to the cold upper atmosphere by
fusion and melting (the conductor). The analogy to an
engine is straightforward. The radiation, condensation,

3792 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 65



and sensible heating act like the fuel, which generates a
net sink of dry entropy. Part of that sink is wasted by
the conductor, just like a combustion engine that expe-
riences conductive losses. The remainder of the sink is
used to maintain the atmosphere’s motion against the
frictional force of eddies (the brakes) and the weight of
water (the elevator).

This picture leads to a set of four rather intuitive
reasons for the low anemonal dissipation in moist con-
vection as compared to dry convection. First, in dry
convection, the supply of energy from the surface takes
the form of sensible heat, which is added to the atmo-
sphere at the surface air temperature. In moist convec-
tion, a large amount of the energy supplied from the
surface takes the form of latent heat, which must rise up
through the atmosphere to a higher altitude before it
can condense. This decreases the temperature separa-
tion between the addition and removal of heat, which
reduces the overall dry-entropy sink.

Next, imagine a dry atmosphere that has the same
vertical profiles of heating and cooling as in a moist
atmosphere. Although the moist atmosphere now has
the same effective heights of heating and cooling as this
fictional dry atmosphere, the temperature separations
would still be much smaller because the lapse rate is
nearly a moist adiabat instead of a dry adiabat. This
difference in lapse rates is the second reason for the
smaller dry-entropy sink produced by the energy flow
through a moist atmosphere.

The third and fourth reasons for a smaller anemonal
dissipation are evident in Table 4. The dry-entropy sink
produced by sensible heating, condensation, and radia-
tion must be shared among anemonal dissipation and
two other terms that are not present in a dry atmo-
sphere: the lifting of water by the atmosphere’s water
elevator and the transport of heat by the atmosphere’s
conductor. Therefore, the four key reasons for the low
anemonal dissipation in moist convection are the small
Bowen ratio, the moist lapse rate, the elevator, and the
conductor.

It is notable that the low precipitation efficiency of
moist precipitation does not make this list. In runs with

previous versions of DAM that used the same specific
heat capacity for all phases of water and employed a
constant turbulent viscosity instead of a Smagorinsky
scheme, the effective temperature of evaporation was
consistently warmer than the effective temperature of
condensation by about 2 K. Combined with a low pre-
cipitation efficiency, this temperature separation made
the effective temperature of net condensation many de-
grees colder than either the temperature of condensa-
tion or evaporation. This effect played a pivotal role in
bringing the effective temperature of net condensation
closer to the radiation temperature. However, in the
simulations presented here using realistic heat capaci-
ties and a Smagorinsky scheme, the effective tempera-
tures of condensation and evaporation are nearly iden-
tical, so there is no such effect. The mean temperature
difference between condensation and evaporation
among the eight simulations is �0.01 K, with a standard
deviation of 0.14 K. None of the eight runs had a tem-
perature separation greater than 0.20 K. Because this
demonstrates that the low precipitation efficiency can-
not be trusted to reliably lower the condensation tem-
perature—indeed, the low precipitation efficiency
raised the condensation temperature in some runs—
this effect cannot be added to the list of explanations
for the small anemonal dissipation of moist convection.

An explanation for the small anemonal dissipation
was given by Pauluis and Held (2002a,b) from the per-
spective of the entropy budget, which involved the dif-
fusion of water vapor and nonequilibrium phase
changes. Although they showed how these entropy
sources could be rewritten approximately in terms of
the condensation temperature, the intuition remained
rooted in a water-vapor-centric perspective: for ex-
ample, the work performed by water vapor and the
transport of latent heat. On the other hand, the budget
of dry entropy automatically gives a formulation in
terms of the condensation temperature that can be de-
rived exactly. In a sense, this cuts out the middleman of
water vapor and presents a budget that includes only
sensible heating and work, much like a textbook heat
engine. The intuition gained from this perspective is not

TABLE 4. The simplified dry-entropy budget (mW m�2 K�1).

5, 300 5, 303 10, 300 10, 303 5, 300 5, 303 10, 300 10, 303

w/o diff w/o diff w/o diff w/o diff w/ diff w/ diff w/ diff w/ diff

Radiation �402.6 �473.1 �432.2 �503.7 �397.9 �468.4 �426.4 �497.6
Condensation 367.9 431.1 411.3 477.3 366.1 429.8 408.0 473.6
Sensible 25.5 31.8 11.2 16.1 22.9 29.0 9.0 13.7
Brakes 5.3 6.0 5.8 6.5 4.6 5.2 5.0 5.6
Elevator 3.0 3.2 3.2 3.4 3.1 3.4 3.4 3.6
Conductor 1.7 1.7 1.7 1.7 1.8 1.8 1.8 1.8
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at odds with the intuition presented by Pauluis and
Held (2002a,b), but it is arguably simpler to understand
and more amenable to use as a predictive tool.

The effect of the Bowen ratio was discussed implic-
itly by Pauluis and Held (2002a) through their compari-
son of dry and moist atmospheres. The explicit inclu-
sion of the small Bowen ratio as one of the four causes
of small anemonal dissipation is warranted for a variety
of reasons: observations that the Bowen ratio is small
over the tropical ocean in both empirical studies and
numerical simulations, the fact that a limit on the Bo-
wen ratio may be derived theoretically, and the expec-
tation that the Bowen ratio will change in a predictable
way with global warming. The first of these three rea-
sons is supported by the energy budgets presented in
Table 1, where the Bowen ratio was always less than
0.1. It is also possible to put a theoretical upper limit on
the Bowen ratio using a bulk surface-flux scheme. Over
the ocean, the largest Bowen ratio will occur when the
surface air is saturated. In this case, the sensible flux
will be proportional to cpm�T and the latent heat flux
will be proportional to Le(T)[q*,l(T) � q*,l(T � �T)].
Therefore, the maximum Bowen ratio is given by

Bmax �
cpm

Le�T�
��q �*

,l

�T ��1

.

At sea level pressure, a sea surface temperature of 300
K gives a maximum Bowen ratio of 0.32. In reality and
in the simulations, the surface air is undersaturated, so
the Bowen ratio is significantly smaller than this. How-
ever, it is reasonable to assume that the Bowen ratio
over the tropical ocean will change with global warming
in the same direction as this upper limit, especially if the
boundary layer relative humidity remains unchanged.
Because this upper limit decreases with increasing tem-
perature (0.25 for 305 K and 0.20 for 310 K), the Bowen
ratio over the tropical ocean should decrease with in-
creasing temperatures. This expectation is confirmed
by studies of general circulation models (Held and
Soden 2006). Therefore, the reduced Bowen ratio in a
warmer world should predispose the anemonal dissipa-
tion toward smaller values.

The second cause of the smallness of dissipation is
the relatively small lapse rate in a moist atmosphere.
This point has not been emphasized in previous work,
but it is certainly important enough to be included on
the short list. Compared to an atmosphere with a 10 K
km�1 lapse rate, an atmosphere with the same sensible
heatings but a lapse rate of 6 K km�1 will experience a
40% reduction in the magnitude of the dry-entropy sink
available to the brakes, elevator, and conductor. Ex-
pectations that the lapse rate will decrease with in-

creased temperatures mean that this effect will incline
the anemonal dissipation toward smaller values with
global warming. Although both a smaller Bowen ratio
and a smaller lapse rate would, all else equal, lead to a
smaller value of dissipation, other effects, such as
changes in the effective radiation temperature with in-
creased CO2, may actually lead to increases in dissipa-
tion.

The two terms that combine to make the elevator
term, �R�e log(p/p0) and g • (dl � ds)/T, were discussed
by Pauluis and Held (2002a), who described the first
term as the work performed by water vapor. In their
simulation, they found that the sum of these terms was
a net source of entropy, but there was not enough data
from the one simulation to say anything definite about
the sign of the sum for general RCE. In the eight simu-
lations shown here, the sum is consistently positive,
leading to some confidence that the sum is positive for
moist RCE under current tropical oceanic conditions.
Because the value of the elevator source is between
50% and 70% as large as the source from anemonal
dissipation, it plays an important role in reducing the
amount of dissipation that can be performed by a moist
atmosphere. As for the conductor, its effect on the en-
tropy and dry-entropy budgets has not previously been
addressed. As seen in Table 4, it is large enough to be
of importance when quantitative estimates of dissipa-
tion are desired.

As we have seen, the dry-entropy budget may be of
some use in predicting the vigor of convection under
global-warming scenarios. The dry-entropy budget may
also predict changes in anemonal dissipation in numeri-
cal models given various changes in the parameteriza-
tions of radiation and microphysics. For example, a
change in the radiation scheme that favors radiative
cooling from higher (and, therefore, colder) altitudes
will, all else being equal, increase the anemonal dissi-
pation. Similarly, a decrease in the shortwave absorp-
tion by high clouds should also be expected to increase
the dissipation by reducing the radiative heating at low
temperatures.

As for the microphysics, a particularly simple set of
parameters to consider would be the terminal velocities
of condensates. As the terminal velocities are in-
creased, the residence times of liquid and solid water
will decrease, which will lead to a decreased source of
dry entropy from the lifting of water. The amount of
water participating in the fuse/melt cycle might also
decrease because more liquid condensate will have
rained out before reaching the fusion height. If the dry-
entropy sink from sensible heating, condensation, and
radiation is unchanged, then the source from anemonal
dissipation must increase. For sufficiently large termi-
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nal velocities of the condensates, the buoyancy from
water vapor may perform more work than is required
to lift the condensate during its short lifetime in the
updrafts. In this case, the lifting of water will become a
net sink of dry entropy. As terminal velocities approach
infinity, the elevator term asymptotes to a sink equal to
the integral of the buoyant work by water vapor divided
by the temperature. This suggests that the anemonal
dissipation should asymptote to a larger value as ter-
minal velocities are increased, which is in agreement
with numerical simulations by Parodi and Emanuel
(2006).

It is also possible to gain predictive power from the
dry-entropy budget by combining it with empirical ob-
servations. For example, the numerical simulations sug-
gest that the anemonal dissipation may be modeled as a
fixed fraction of the radiative cooling, regardless of sur-
face temperature or wind speed. The fraction ��VD /
�VQ took a mean value of 0.0131 for the runs without
scalar diffusion and a mean value of 0.0115 with scalar
diffusion. Although the values of the anemonal dissi-
pation varied by as much as 24% [(max � min)/min]
within each set of four runs, the ratios of dissipation to
radiative cooling varied by no more than 4.5%. This
finding appears to concur with the study by Robe and
Emanuel (1996), who found in their cloud-resolving
simulations that the convective mass flux increased al-
most linearly with the total radiative cooling, whereas
the vertical velocity of the updrafts remained un-
changed. If the anemonal dissipation is a function only
of the vertical velocity profile of updrafts and the num-
ber of updrafts, then their results would imply a fixed
ratio of anemonal dissipation to radiative cooling. Be-
cause the effective temperature of dissipation does not
vary significantly, the ratio ��V (D/T)/�VQ is also ap-
proximately invariant. In addition, the source of dry
entropy from the elevator also scales very well with the
total radiative cooling. On the other hand, the conduc-
tor does not scale with the radiative cooling, but it is the
smallest of the three entropy sources. Therefore, to a
good approximation, the net sink of dry entropy from
sensible heating, condensation, and radiation is an in-
variant fraction of the total radiative cooling.

For the simulations without scalar diffusion, this in-
variance may be written as

1
�V Q ��V Q

TQ
�

�V Lee

Tc
�

� � J
Tsurf

� � �,

where 
 is an empirically determined constant, TQ is
the effective temperature of radiative cooling, Tc is the
effective temperature of condensation, and the lack of

heat diffusion justifies the substitution of Tsurf for the
effective temperature of sensible heating. This may be
rewritten in terms of the Bowen ratio B as

1

�1 � B�Tc
�

B

�1 � B�Tsurf
�

1
TQ

� � � 0.

This approximation provides very good estimates of Tc

given the other values but does less well when used to
estimate the Bowen ratio. Among the eight simulations,
the Bowen ratio ranges from 2.7% to 7.6%. As dis-
cussed earlier, the smallness of this ratio explains a
large amount of the difference in anemonal dissipation
between dry and moist convection. It is less clear, how-
ever, what role the Bowen ratio plays in regulating the
anemonal dissipation for moist convection under differ-
ent forcings. If it is true that the anemonal dissipation is
a fixed fraction of radiative cooling, then the Bowen
ratio may play more of a supporting role, adjusting as
necessary to bring the radiation/condensation/sensible
dry-entropy sink in line with the brakes/elevator/
conductor dry-entropy source.

7. Conclusions

By studying the dry-entropy budget of a moist atmo-
sphere, including a solid phase of water, a simple anal-
ogy to a heat engine has emerged. The heating from
radiation, condensation, and sensible fluxes provide a
sink that must be matched by the sources correspond-
ing to the work performed against wind-generated fric-
tional dissipation (the “brakes”), the work performed
in lifting water (the “elevator”), and the heat transport
from the fuse/melt cycle in the upper troposphere (the
“conductor”). The small Bowen ratio and small lapse
rate of moist convection explain why the available sink
from radiation, condensation, and sensible heat fluxes
must be small. The fact that this small sink must be
shared with the lifting of water and the fuse/melt cycle
further reduces the size of the wind-generated dissipa-
tion.

Indications from numerical simulations suggest that
terms in the dry-entropy budget may change in under-
standable and predictable ways given changes in forcing
or parameterization. For example, it was shown that an
increase in the eddy diffusivity of water vapor will
lower the effective temperature of condensation. In ad-
dition, empirical observations may be coupled with the
dry-entropy budget to find powerful constraints on ef-
fective temperatures and the Bowen ratio. The obser-
vation that the wind-generated dissipation increases lin-
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early with the total radiative cooling is an example of
such an input. Furthermore, the dry-entropy budget is
only one out of many possible integral equations that
could potentially yield powerful insights into the
steady-state behavior of moist convection.

Several questions and avenues of inquiry are raised
by the results presented here. For example, while there
are many different formulations of subgrid processes in
the literature on fluid turbulence, they have not yet
been systematically subjected to scrutiny from the per-
spective of the entropy or dry-entropy budgets. As
shown here, the first-order down-gradient Smagorinsky
formulation for the subgrid transport of dry static en-
ergy clearly fails to comply with expectations that sub-
grid heat transport be a net source of entropy or dry
entropy. It would merit further research to assess ex-
isting turbulence schemes for their ability to produce
entropy sources of the correct sign and magnitude.

To date, cloud-resolving studies of the moist entropy
budget have been restricted to disorganized convection.
It remains to be seen what kind of impact mesoscale
organization might have on the terms in the entropy
budget. How different is the rate of dissipation in a
tropical cyclone compared to disorganized convection,
and what differences in the entropy budget allow for

that difference? Can the entropy budget place stringent
bounds on the intensity of storms? Questions like these
have not yet been addressed, but given the importance
of wind-generated dissipation to those living in the at-
mosphere’s boundary layer, these questions certainly
deserve attention.
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APPENDIX A

Deriving the Dry-Entropy Budget (21)

The integrand in (20),

��{�u��cpm log�T�T0� � Rm log�p�p0��},

can be shown to equal the integrand in (21) by using the
differential governing equations. Ignoring the loga-
rithms for the moment, we can derive

���cpm�u�� � cpa����1 � q� � ql � qs��u�� � cp����q��u�� � c� l���ql�u�� � c�s���qs�u��

� cp��e � � � d�� � c� l��e � m � � � dl� � c�s��m � � � ds�,

and

���Rm�u�� � Ra����1 � q� � ql � qs��u�� � R����q��u�� � R��e � � � d��.

Therefore, the divergence of the first term is

���cpm�u� log�T�T0�� � �cp��e � � � d�� � c�l��e � m � � � dl� � c�s��m � � � ds�� log�T�T0� � cpm�u�
1
T

��T

� �cp��e � � � d�� � c�l��e � m � � � dl� � c�s��m � � � ds�� log�T�T0� �
cpm

T
����Tu��

� cpm����u��

� �cp��e � � � d�� � c�l��e � m � � � dl� � c�s��m � � � ds�� log�T�T0�

� cpm� � �d� � dl � ds�

�
cpm

c�mT
�Q � p� � u � D � c��d� � �T � � � �R�Td�� � c�ldl � �T � c�sds � �T

� g � �d� � dl � ds� � � � J � eE0� � mE0s � c�mT� � �d� � dl � ds�

� �c�l � c����T � Ttrip�e � �c�s � c�l��T � Ttrip�m�,
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where the last line uses the expression for �
(c�T	u
), which is obtained by subtracting from (11) the sum of (17),
E0� times (7), and �E0s times (9). The divergence of the negative of the second term is

���Rm�u� log�p �p0�� � R��e � � � d�� log�p �p0� � Rm�u�
1
p

��p

� R��e � � � d�� log�p�p0� �
u�

T
���Rm�T�

� R��e � � � d�� log�p �p0� � �u���Rm �
u�Rm

T
����T �

� R��e � � � d�� log�p �p0� � ���Rm�u�� � Rm����u��

�
Rm

T
���T�u�� � Rm�� � u

� R��e � � � d�� log�p �p0� � R��e � � � d�� � Rm� � �d� � dl � ds�

�
p

T
� � u �

Rm

c�mT
�Q � p� � u � D � c��d� � �T � � � �R�Td��

� c� ldl � �T � c� sds � �T � g � �d� � dl � ds� � � � J � eE0�

� mE0s � c�mT� � �d� � dl � ds� � �c�l � c����T � Ttrip�e

� �c�s � c� l��T � Ttrip�m�.

Subtracting this expression from the first one and integrating over space and time yields Eq. (21).

APPENDIX B

Deriving the Integral Equation (25)

We will show here that the integral Eq. (25) corresponds to the specific quantity

Rm log�1 � �q� � ql � qs� � R�q� log��1 � ��q��.

The space–time integral of 	u
 times the first term gives

����u�Rm log�1 � �q� � ql � qs�� � R��e � � � d�� log�1 � �q� � ql � qs� � Ra�u����1 � �q� � ql � qs�

� R��e � � � d�� log�1 � �q� � ql � qs� � Ra����q��u�� � Ra�q�����u��

� Ra���ql�u�� � Raql����u�� � Ra���qs�u�� � Raqs����u��

� R��e � � � d� � log�1 � �q� � ql � qs� � Ra��q� � ql � qs�� � �d� � dl � ds�

� Ra��e � � � d�� � Ra��e � m � � � dl � � Ra��m � � � ds�.

Similarly, the second term gives

� ��{�u�R�q� log��1 � ��q��} � �R��e � � � d� � log��1 � ��q�� � R��u���q�

� �R��e � � � d� � log��1 � ��q�� � R����q��u�� � R�q�����u��

� �R��e � � � d� � log��1 � ��q�� � R��e � � � d�� � R�q�� � �d� � dl � ds�.

Adding the two terms, integrating, and recalling that the integral of a space–time divergence is zero yields

�
V

R��e � � � d� � log�1 � �q� � ql � qs

�1 � ��q�
�� �

V

Ra�1 � q� � ql � qs�� � �d� � dl � ds� � 0. �B1�
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Note that the second term in (B1) may be written as

��
V

Ra�1 � q� � ql � qs�����u��.

Using the fact that

����u�� � ����q� � ql � qs��u��,

and assuming a steady state so that the time-averaged
space–time integral of a four-divergence is zero, we can
write, for any real number n,

�
V

�q� � ql � qs�
n����u�� � �

V
�q� � ql � qs�

n����q� � ql � qs��u��

� ��
V

�q� � ql � qs��u�����q� � ql � qs�
n�

� �n�
V

�q� � ql � qs�
n�u����q� � ql � qs�

� �n�
V

�q� � ql � qs�
n����q� � ql � qs��u��

� n�
V

�q� � ql � qs�
n�1����u��

� �n�
V

�q� � ql � qs�
n����u�� � n�

V
�q� � ql � qs�

n�1����u��,

which can be rearranged for any n � �1 to give

�
V

�q� � ql � qs�
n����u�� �

n

n � 1 �V
�q� � ql � qs�

n�1����u��.

By induction, we have, for any nonnegative integer m and any positive integer n,

�
V

�q� � ql � qs�
m����u�� �

m

n �
V

�q� � ql � qs�
n����u��.

By taking the limit of large n and noting that [(q� � ql

� qs)
n]/n goes to zero in this limit because q� � ql � qs


 1, we get

�
V

�q� � ql � qs�
m����u�� � 0. �B2�

In a similar fashion, it is possible to demonstrate the
identities

�
V

f�q� � ql � qs�� � �d� � dl � ds� � 0

�
V

f� q�

1 � ql � qs
��e � � � d�� � 0

�
V

f� ql

1 � q� � qs
���e � m � � � dl� � 0

�
V

f� qs

1 � q� � ql
���m � � � ds� � 0

for any sufficiently well-behaved function f. From Eq.
(B2) with m � 0 and m � 1, it is clear that the second
term in (B1) is zero. Therefore, we get the desired in-
tegral equation,

�
V

R��e � � � d� � log�1 � �q� � ql � qs

�1 � ��q�
�� 0.

Multiplying the numerator and denominator of the
fraction by Ra	T yields Eq. (25).
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