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Quantum Bousso bound

Andrew Strominger and David Thompson
Jefferson Physical Laboratory, Harvard University, Cambridge, Massachusetts 02138, USA

~Received 20 April 2004; published 9 August 2004!

The Bousso bound requires that one-quarter of the area of a closed codimension-2 spacelike surface exceeds
the entropy flux across a certain lightsheet terminating on the surface. The bound can be violated by quantum
effects such as Hawking radiation. It is proposed that at the quantum level the bound be modified by adding to
the area the quantum entanglement entropy across the surface. The validity of this quantum Bousso bound is
proven in a two-dimensional large N dilaton gravity theory.
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I. INTRODUCTION

The generalized second law of thermodynamics~GSL! @1#
roughly speaking states that one-quarter of the area of b
hole horizons plus the entropy outside the horizons is n
decreasing. This law was formulated in an attempt to rep
inconsistencies in the ordinary second law in the presenc
black holes. There is no precise general statement, let a
proof, of the GSL, but it has been demonstrated in a co
pelling variety of special circumstances. It indicates a de
connection between geometry, thermodynamics, and q
tum mechanics which we have yet to fathom. The ho
graphic principle@2,3#, which also has no precise gener
statement, endeavors to elevate and extend the GSL to
texts not necessarily involving black holes. In@4#, a math-
ematically precise modification of the GSL/holographic pr
ciple was proposed that is applicable to null surfaces wh
arenot horizons@5#. This proposed ‘‘Bousso bound,’’ alon
with a generalization stated therein, was proven, subjec
certain conditions, in a classical limit by Flanagan, Maro
and Wald@6#.

The Bousso bound, as stated, can be violated by quan
effects@7#. Mathematically, the proofs of the bound rely o
the local positivity of the stress tensor which does not hold
the quantum world. Physically, the bound does not acco
for entropy carried by Hawking radiation. In this paper, w
propose that, at a semiclassical level, the bound can be
stored by adding to one-quarter of the surface area the
tanglement entropy across the surface. We will make
statement fully precise, and then prove it, in a tw
dimensional model of large N dilaton gravity.

This paper is organized as follows. We begin by revie
ing Bousso’s covariant entropy bound in Sec. II. We w
review the lightsheet construction in general D-dimensio
spacetime, although our main interest in the remainder of
paper will be four and two dimensions. In Sec. III, we w
discuss how Bousso’s bound can be violated in the prese
of semiclassical effects, like Hawking radiation. This w
motivate us to propose a ‘‘quantum Bousso bound’’ in S
IV. By assuming an adiabaticity condition on the entro
flux, we will show in Sec. V that the classical Bousso bou
can be proven in four and two dimensions. In Sec. VI,
extend the analysis to the two-dimensional RST quantiza
@8# of the CGHS model@9# which includes semiclassica
1550-7998/2004/70~4!/044007~8!/$22.50 70 0440
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Hawking radiation and its backreaction. We will show th
the quantum Bousso bound holds in this gravitational theo

II. REVIEW OF THE CLASSICAL BOUSSO BOUNDS

The Bousso bound asserts that, subject to certain assu
tions, the entropy of matter that passes through certain lig
sheets associated with a given codimension-2 spatial sur
in spacetime is bounded by the area of that surface@4#.

This entropy bound provides a covariant recipe for as
ciating a geometric entropy with any spatial surfaceB that is
codimension 2 in the spacetime. At each point ofB, there are
four null directions orthogonal toB. These four null direc-
tions single out four unique null geodesics emanating fr
each point ofB: two future-directed and two past-directe
Without loss of generality, we choose an affine parametel
on each of these curves such thatl equals zero onB and
increases positively as the geodesic is followed away fromB.

Along each of the four geodesics, labeled byi, an expan-
sion parameteru i(l)5¹a(d/dl)a can be defined. If we note
that each of the future-directed geodesics is simply the
tension of one of the past-directed geodesics, then the
lowing relations between the expansion parameters bec
clear:u1(0)52u3(0), u2(0)52u4(0). Therefore, at least
two of the four geodesics will begin with a nonpositive e
pansion. A ‘‘lightsheet’’ is a codimension-1 surface genera
by following exactly one nonexpanding geodesic from ea
point of B. Each geodesic is followed until one of the fo
lowing occurs on it:~i! The expansion parameter becom
positive, u.0, or ~ii ! a spacetime singularity is reache
Note that, in spacetime dimensions greater than 2, there
an infinite number of possible lightsheets to choose fr
since, for each point onB, there are at least two contractin
null geodesics from which to choose.

The original Bousso bound conjectures that Nature ob
the following inequality:

Entropy passing through any lightsheet ofB

<
1

4
~Area of B!. ~1!

In order to make this statement precise, we must clarify w
we mean by the entropy that passes through a lightshee
general, this is ambiguous because entropy is not a lo
©2004 The American Physical Society07-1
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A. STROMINGER AND D. THOMPSON PHYSICAL REVIEW D70, 044007 ~2004!
concept. However, there is a thermodynamic limit in whi
the entropy is well-approximated by the flux of a four-vec
sa. As discussed by Flanagan, Marolf, and Wald~FMW! in
@6#, this thermodynamic limit is satisfied under the entro
condition that we will use in Secs. V and VI. The Bous
bound as formulated so far pertains mainly to this limit.

To find the entropy flux that passes through the lightsh
we must projectsa onto kb, the unique future-directed nor
mal to the lightsheet. Up to a sign,k is d/dl sinced/dl is
null and orthogonal to all other lightsheet tangent vectors
construction. In order to keepka future-directed, we choos
ka5(d/dl)a if the lightsheet is future-directed, andka5
2(d/dl)a if the lightsheet is past-directed. Since we use
mostly positive metric signature, the entropy flux throu
any point of the lightsheet is

s[2kasa. ~2!

In the language of entropy flux, the entropy bound b
comes

E
L(B)

s<
1

4
~Area of B!, ~3!

whereL(B) denotes the lightsheet ofB. However, there is a
generalized Bousso bound@6# in which the lightsheet is pre
maturely terminated on a spatial surfaceB8. It is clear that
the integral ofs over this terminated lightsheet equals t
integral over the full lightsheet ofB minus the integral over
the full lightsheet ofB8. Assuming thats is everywhere posi-
tive, Bousso’s original entropy bound tells us that

E
L(B2B8)

s<E
L(B)

s<
1

4
~Area of B!, ~4!

whereL(B2B8) denotes the lightsheet ofB terminated on
B8. In this paper, we will be interested in the generaliz
Bousso bound, first proposed by FMW@6#, which imposes
the much stronger bound on the terminated lightsheet,

E
L(B2B8)

s<
1

4
@A~B!2A~B8!#. ~5!

This has been proven under suitable assumptions by F
@6#. Note that this generalized entropy bound directly impl
Bousso’s original entropy bound.

III. SEMICLASSICAL VIOLATIONS

The entropy bounds so far pertain largely to the class
regime. When quantum effects are included, even at
semiclassical level, we expect that the bounds must be so
how modified to account for the entropy carried by Hawki
radiation. Mathematically, the proofs@6# are not applicable
because quantum effects violate the positive energy co
tion.

The classical proofs hinge on the focusing theorem
classical general relativity. The focusing theorem, in tu
derives from the Raychaudhuri equation and the null ene
condition. The Raychaudhuri equation provides a differen
04400
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equation for the expansion parameter along a null geod
@10#,

du

dl
52

1

D22
u22sabs

ab1vabv
ab28pTabk

akb, ~6!

wheresab is the shear tensor andvab is the twist tensor. For
a family of null geodesics that start off orthogonal to a sp
tial surface, such as the case for a lightsheet, the twist te
is zero. Finally, if we assume that the null energy conditi
holds, then the last term is negative. The null energy con
tion postulates thatTabk

akb is non-negative for all null vec-
tors ka. As a result, we find that the expansion parame
satisfies the inequality

du

dl
<2

1

D22
u2. ~7!

This gives us the focusing theorem: If the expansion para
eter takes the negative valueu0 along a null geodesic of the
lightsheet, then that geodesic will reach a caustic~i.e., u→
2`) within the finite affine timeDl<(D22)/uu0u.

So long as energy is required to produce entropy, the
cusing theorem ensures that the presence of entropy
cause the lightsheet to reach a caustic and, therefore, te
nate. The more entropy we try to pass through the lightsh
the faster the lightsheet terminates. This gives a compel
argument for why only a finite, bounded amount of entro
could be passed through the lightsheet. According to
Bousso bound, this upper bound is precisely one-quarter
area of the generating surface.

In practice, the covariant entropy bound can be violated
the presence of matter with negative energy. By mixi
positive-energy matter and negative-energy matter, a sys
with zero energy can be made to carry an arbitrary amoun
entropy. Again, the entropy passing through any given lig
sheet could be increased arbitrarily. At the classical level,
could simply demand that the energy-momentum ten
obeys the null energy condition. This is the weakest of all
most common energy conditions and, as can be seen f
Eq. ~6!, is the one needed for the focusing theorem, and t
to make the Bousso bound plausible.

However, the Bousso bound is in serious trouble once
include quantum effects. We know that none of the lo
energy conditions can hold even at first order in\. In par-
ticular, the phenomenon of Hawking radiation violates t
null energy condition near the horizon of black holes. Th
allows for violations of the focusing theorem. This violatio
can be seen most clearly for future-directed, outgoing n
geodesics that hover for a while in between the event hori
and apparent horizon of an evaporating black hole. The
parent horizon is the boundary of the region of trapped s
faces, so the congruence of null geodesics is contracting
side the apparent horizon. However, as the black h
evaporates, the apparent horizon follows a timelike traject
towards the event horizon. The null geodesic could th
leave the apparent horizon and begin expanding, in viola
of the focusing theorem.
7-2
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QUANTUM BOUSSO BOUND PHYSICAL REVIEW D70, 044007 ~2004!
Furthermore, in@7#, Lowe constructs a related countere
ample to the covariant entropy bound in the presence o
critically illuminated black hole. Critical illumination is the
process in which matter is thrown into a black hole at exac
the same rate as energy is Hawking radiated away. In
scenario, the apparent horizon follows a null trajectory. If
pick the apparent horizon to be the generating surface f
lightsheet, then the lightsheet will coincide with the appar
horizon as long as we continue to critically illuminate t
black hole. By critically illuminating the black hole suffi
ciently long, we can pass an arbitrary amount of ma
through the lightsheet. In this way, the entropy of the ma
passing through the lightsheet can be made larger than
area of the apparent horizon, thus violating the entro
bound.

Hence, the original Bousso bound only has a chance
holding in the classical regime. Once we include one-lo
quantum effects, such as Hawking radiation, the bound fa
In the remaining sections, we propose a modification of
Bousso bound which may hold in the semiclassical regim

IV. QUANTUM BOUSSO BOUND

The generalized Bousso bound, when specialized to b
hole horizons, is equivalent to a classical limit of the gen
alized second law of thermodynamics~GSL!. To see this,
note that the portion of the event horizon lying between a
two times constitutes a lightsheet. Since all matter fall
into the black hole between those two times must p
through this lightsheet, the generalized entropy bound g
us the same information as the GSL. In particular, we le
that

1

4
DAEH>DSm, ~8!

whereDAEH is the change in event horizon area, andDSm is
the entropy of the matter that fell in.

When quantum effects are included, the form~8! of the
generalized second law is no longer valid. The quantum G
states, roughly speaking, that the total entropy outside
black hole plus one-quarter the area of the horizon~either
event or apparent depending on the formulation! is nonde-
creasing. The entropy outside the black hole receives an
portant contribution from Hawking radiation. Therefore, w
must augment the left hand side by the entropy of the Ha
ing radiation,

1

4
DAH1DShr>DSm. ~9!

In general, we do not know how to formulate, let alo
prove, an exact form of the GSL in a full quantum theory
gravity. However, approximations to it have been formula
and demonstrated in a wide variety of circumstances@11#.
The DShr term is crucial in these demonstrations, witho
which counterexamples may be easily found.

Since the GSL requires an additional term at the quan
level, and the GSL is a special case of the generali
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Bousso bound, we should certainly expect that the Bou
bound will receive related quantum corrections. These c
rections should reduce toDShr when the lightsheets are take
to be portions of event horizons. The problem is to precis
formulate the nature of these corrections.

In this context it is useful to think of the entropy in Hawk
ing radiation as entanglement entropy. Evolution of the qu
tum fields on a fixed black hole geometry is a manifes
unitary process prior to singularity formation. Neverthele
entropy is created outside the black hole because the ou
ing Hawking quanta are correlated with those that fall beh
the horizon. When a region of spaceU is unobservable, we
should trace the quantum statec over the modes in the un
observable region to obtain the observable density matrixr,

r5trUuc&^cu. ~10!

Since the full state is in principle not available to the o
server, there is a de facto loss of information that can
characterized by the entanglement entropy

Sent52tr r logr. ~11!

In general, this expression has divergences and requires
ther definition, which will be given below for the case of tw
dimensions. ChoosingU to be the region behind the horizon
we can therefore formally identify

DShr5DSent. ~12!

This motivates a natural guess for quantum corrections to
Bousso bound when the initial and final surfaces are clos
One should add to the area the entanglement entropy ac
the surface. Applying this modification to the classic
Bousso bound~5! results in a quantum Bousso bound of t
form

E
L(B2B8)

s<
1

4
A~B!1Sent~B!2

1

4
A~B8!2Sent~B8!.

~13!

Since we cannot presently hope to solve this problem
even define this quantum bound in exact quantum gravity
order to go further we need to identify a small expans
parameter for approximating the exact theory. A useful
rameter, which systematically captures the quantum cor
tions of Hawking radiation, is provided by 1/N, whereN is
the number of matter fields andGNN is held fixed@9#. In
@12# it was shown in the two-dimensional RST model
black hole evaporation that the~suitably defined! GSL, in-
corporating the Hawking radiation as in Eq.~9!, is valid. One
might hope that a similar incorporation can save the Bou
bound.

In the process of the investigations in@12# it emerged that
the sumA14Sent[Aqu arises naturally in the theory as
kind of quantum-corrected area. In this paper, we prop
that the required leading 1/N semiclassical correction to th
generalized Bousso bound simply involves the replacem
of the classical area with this quantum corrected area. A p
cise version of this statement will be formulated and prov
in the RST model in Sec. VI.
7-3
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V. PROVING THE CLASSICAL BOUSSO BOUNDS

In this section we reproduce proofs of classical Bou
bounds. We first give a proof due to Bousso, Flanagan,
Marolf of the generalized Bousso bound in four dimensio
@13#.1 This simplified proof follows from conditions on th
initial entropy flux and an adiabaticity condition on the ra
of change of the entropy flux which differ somewhat fro
the conditions assumed in@6#. We then describe a two di
mensional version of the proof obtained by spherical red
tion. A small modification of this gives a proof of the gene
alized Bousso bound in the classical CGHS model@9#, which
is then transcribed into Kruskal gauge for later convenien
The inclusion of quantum effects in the latter will be th
subject of the next section.

A. Simplified proof in four dimensions

Following @6#, the integral of the entropy fluxs over the
lightsheet can be written as

E
L(B2B8)

s5E
B
d2xAh~x!E

0

1

dls~x,l!A~x,l!. ~14!

In this expression, we have chosen a coordinate sys
(x1,x2) on the spatial surfaceB, h(x) is the determinant of
the induced metric onB, and the affine parameter on ea
null geodesic of the lightsheet has been normalized so
l51 is when the geodesic reachesB8. The functionA(x,l)
is the area decrease factor for the geodesic that begins a
point x on B. In terms ofu, it is given by

A[expF E
0

l

dl̃u~ l̃ !G . ~15!

The physical intuition for Eq.~14! is simple. As we parallel
propagate a small coordinate patch of aread2xAh(x) from
the point (x,0) onB to the point (x,l) on the lightsheet, the
area contracts tod2xAh(x)A(x,l). The proper three-
dimensional volume of an infinitesimal cube of the lightsh
is d2xdlAh(x)A(x,l), and this volume timess(x,l) gives
the entropy flux passing through that cube. In order to pr
the generalized entropy bound, it is sufficient to prove th

E
0

1

dls~l!A~l!<
1

4
@12A~1!# ~16!

for each of the geodesics that comprise the lightsheet.
Using a mostly positive metric signature, the assumed

tropy conditions are
i. s8<2pTabk

akb

ii. s(0)<2 1
4 A8(0),

where we use the notation, both here and henceforth,
primes denote differentiation with respect to the affine
rameterl. Condition i is very similar to one of the condi
tions in @6#. It can be interpreted as the requirement that

1We thank Raphael Bousso and Eanna Flanagan for explai
this proof prior to publication.
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rate of change of the entropy flux is less than the energy fl
which is a necessary condition for the thermodynamic
proximation to hold.2 Conditionii requires only that the gen
eralized entropy bound is not violated infinitesimally at t
beginning of the lightsheet. Since the square root ofA rou-
tinely appears in calculations, we borrow the notation
FMW and define

G[AA. ~17!

From the Raychaudhuri equation, we have that

Tabk
akb52

1

4p

G9~l!

G~l!
2

1

8p
sabs

ab<2
1

4p

G9~l!

G~l!
,

~18!

where sab is the shear tensor, and the inequality follow
from the fact thatsabs

ab>0 always. Now we see that

s~l!5E
0

l

dl̃s8~ l̃ !1s~0!

(i)

<2pE
0

l

dl̃Tabk
akb1s~0!

(eom)

<2pE
0

l

dl̃S 2
1

4p

G9~ l̃ !

G~ l̃ !
D 1s~0!

5
1

2 S G8~0!

G~0!
2

G8~l!

G~l! D
2

1

2E0

l

dl̃
G8~ l̃ !2

G~ l̃ !2
1s~0!

(ii)

<2
1

2

G8~l!

G~l!
2

1

2E0

l

dl̃
G8~ l̃ !2

G~ l̃ !2

<2
1

2

G8~l!

G~l!
.

Consequently,

E
0

1

dls~l!G~l!2<2
1

2E0

1

dlG~l!G8~l!

5
1

4
@A~0!2A~1!#. ~19!

We have shown that, given our entropy conditions, the
tropy passing through a lightsheet is bounded by one-qua
the difference in area of the two bounding spatial surfac
This is precisely the statement of the generalized Bou
bound.

ng2It is interesting to note that large negative energy fluxes m
eventually constrain the entropy flux to be negative.
7-4
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QUANTUM BOUSSO BOUND PHYSICAL REVIEW D70, 044007 ~2004!
It is interesting to note that nowhere in the proof did w
need to use the contracting lightsheet condition. The o
indication that we should choose a contracting lightsh
comes from the boundary condition ii. We see from con
tion ii that, in order to allow a positive, future-directed e
tropy flux, the derivative ofA must be negative. If the light
sheet were expanding atl50, then a timelike entropy flux
would have to be past-directed atl50.

Note also that Bousso’s entropy bound can be satur
only if G850 for all l. In light of the Raychaudhuri equa
tion ~18!, we see thatTab and the shearsab must be zero
everywhere along the lightsheet in order forG8 to remain
zero. The bound can be saturated only in this most triv
scenario. This will not be the case for other gravitation
theories we will study, such as the CGHS dilaton mod
where saturation of the bound can occur in the presenc
matter.

B. Spherical reduction

Our goal is to study the entropy bound in two dimensio
models where our semiclassical analysis will be greatly s
plified. As a guide to what phenomenological conditions
should be using in 2D models, we will first rederive th
previous proof for the purely spherical sector of 4D Einste
Hilbert gravity.

We begin with the 4D Einstein-Hilbert action coupled
some matter Lagrangian density,Lm ,

E d4xA2g(4)S R(4)

16p
1L m

(4)D . ~20!

Writing the four-dimensional metric as

~ds2!(4)5gmn~x!dxmdxn

1e22f(x)~dq21sin2qdw2!,

m,nP$0,1%, ~21!

and integrating over the angular coordinates we find the
tion is reduced to

E d2xA2gFe22fS 1

4
R1

1

2
gmn]mf]nf1

1

2
e2fD1LmG .

~22!

Here, the 2D matter Lagrangian densityLm is related toL m
(4)

by

Lm54pe22fL m
(4) . ~23!

From the equations of motion, we conclude that

kakbTab52e2fkakb¹a¹be2f, ~24!

wheneverk is a null vector. In this expression,T is the
energy-momentum tensor forLm , not L m

(4) .
It is clear from the four-dimensional metric that the cla

sical ‘‘area’’ of a point in the 2D model isAcl54pe22f.
However, had we only been given the action, we could id
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tify the ‘‘area’’ of a point as being proportional to the facto
multiplying the Ricci scalar in the Lagrange density. If th
were not convincing enough, we could study the thermo
namics of a black hole solution of the two-dimension
model. In particular, we would first determine the mass o
stationary black hole solution and then compute the temp
ture of the Hawking radiation on this geometry~neglecting
backreaction!. Integrating the thermodynamic identitydS
5dM/T and identifying S as one-quarter the area of th
event horizon, we arrive at an expression for the area of
event horizon in terms of the local values of the vario
fields there. We then designate this function of local fields
the expression that gives us the ‘‘area’’ of any point in t
two-dimensional space.

Deriving the two-dimensional entropy conditions is
simple matter of rewriting the four-dimensional conditions
terms of two-dimensional tensors. For example, we repl
Tab

(4) with (1/4p)e2fTab . We are also interested in the two
dimensional entropy fluxsa which is related to the four-
dimensional entropy fluxsa

(4) by sa
(4)5(1/4p)e2fsa . This

relation is a simple consequence of the fact that the 2D
at a point equals the 4D flux up to an overall factor of t
area of the correspondingS2. Replacing 4D tensors with 2D
tensors, we arrive at the following entropy conditions:

i. e22f(se2f)8<2pTabk
akb

ii. s(0)<2 1
4 Acl8 (0).

Note that we continue to uses[2kasa and primes denot-
ing d/dl. Putting it all together, the derivation of the entrop
bound goes through in the same way as it did in the 4D ca

In detail, we find

s~l!5e22f(l)E
0

l

dl̃@s~ l̃ !e2f(l̃)#81e22f(l)s~0!e2f(0)

(i)

<e22f(l)E
0

l

dl̃2pe2f(l̃)kakbTab~ l̃ !

1e22f(l)s~0!e2f(0)

(eom)

522pe22f(l)E
0

l

dl̃~e2f(l̃)!9ef(l̃)

1e22f(l)s~0!e2f(0)

522pe22f(l)@2f8~l!1f8~0!#

22pe22f(l)E
0

l

dl̃@f8~ l̃ !#21e22f(l)s~0!e2f(0)

(ii)

<2p~e22f(l)!822pe22f(l)E
0

l

dl̃@f8~ l̃ !#2

<2p~e22f(l)!8.

Therefore,
7-5
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E
0

1

dls~l!<p~e22f(0)2e22f(1)!

5
1

4
@Acl~0!2Acl~1!#, ~25!

which is exactly the 4D entropy bound, only derived fro
the 2D perspective.

C. CGHS

Although we have derived an entropy bound in a 2
model using 2D entropy conditions, we were guaranteed s
cess since we had spherically reduced a successful 4D p
We now attempt to apply the same entropy conditions
another 2D dilaton gravity model, namely the CGHS mo
@9#. The CGHS model can also be derived as the spher
reduction of a 4D model, but with charges. In what follow
we will work purely at the 2D level without any recourse
higher-dimensional physics. The CGHS action coupled toN
conformal matter fields with Lagrangian densityLm is

E d2xA2g$e22f@R14~¹f!214#1Lm%. ~26!

For a null vectorka, the equations of motion give

kakbTab522e2fkakb¹a¹be2f

12kakb¹ae2f¹be2f. ~27!

To determine the classical ‘‘area’’ of a point, we look at t
coefficient of the Ricci scalar and learn that it is proportion
to e22f. By studying black hole thermodynamics, the co
stant of proportionality can be fixed asAcl58e22f.

To prove the entropy bound, we start with the followin
assumptions:

i. e22f(se2f)8<2Tabk
akb

ii. s(0)<2 1
4 Acl8 (0).

We will continue to uses[2kasa and primes denoting
d/dl. Putting it all together, we find

s~l!5e22f(l)E
0

l

dl̃@s~ l̃ !e2f(l̃)#81e22f(l)s~0!e2f(0)

(i)

<2e22f(l)E
0

l

dl̃e2f(l̃)kakbTab~ l̃ !

1e22f(l)s~0!e2f(0)

(eom)

524e22f(l)E
0

l

dl̃~e2f(l̃)!9ef(l̃)14e22f(l)

3E
0

l

dl̃@f8~ l̃ !#21e22f(l)s~0!e2f(0)

524e22f(l)@2f8~l!1f8~0!#

1e22f(l)s~0!e2f(0)
04400
c-
of.
o
l
al
,

l
-

(ii)

<22~e22f(l)!8.

Therefore, we find the desired relation,

E
0

1

dls~l!<2~e22f(0)2e22f(1)!

5
1

4
@Acl~0!2Acl~1!#. ~28!

D. CGHS in Kruskal gauge

In the previous section, we derived the CGHS entro
bound with manifestly covariant equations of motion a
entropy conditions. However, once we add the one-loop tr
anomaly, we are only able to obtain local equations of m
tion in conformal gauge. Furthermore, our calculations
greatly simplified in Kruskal gauge. Therefore, it behoov
us to rederive the CGHS result in Kruskal gauge.

We will assume that the lightsheet moves in the decre
ing x1 direction. Our results for this past-directedx1 light-
sheet generalize simply to the other three possible lights
directions. Working with thex1 lightsheet, we will be inter-
ested in the following equation of motion:

T11522e2f¹1¹1e2f12¹1e2f¹1e2f. ~29!

In conformal gauge, the right-hand side can be written
2e22f(]1]1f22]1r]1f). In Kruskal gauge, we setr
5f, so this becomes

T1152]1]1e22f. ~30!

Since k152]x1/]l5e22f in Kruskal gauge, our en-
tropy conditions can be rewritten in Kruskal gauge coor
nates as

i. ]1s1<2T11

ii. 2s1(x0
1)< 1

4 ]1Acl(x0
1).

Recall thats[2k1s1 , so2s1 is positive so long as the
proper entropy fluxs is positive.

Applying these conditions, we find

2s1~x1!5E
x1

x0
1

dx̃1]1s1~ x̃1!2s1~x0
1!

(i)

<2E
x1

x0
1

dx̃1T11~ x̃1!2s1~x0
1!

(eom)

52]1e22f] x
0
1

x1

2s1~x0
1!

(ii)

<2]1e22f(x1).

We find that
7-6
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E
0

1

dls~l!5E
x0

1

x1
1

dx̃1s1~ x̃1!

5E
x1

1

x0
1

dx̃1@2s1~ x̃1!#

<
1

4
@Acl~0!2Acl~1!#. ~31!

Had we chosen the future-directedx1 lightsheet, then we
would havek15]x1/]l5e22f and our entropy conditions
would have been ]1(2s1)<2T11 and 2s1(x0

1)<
2 1

4 ]1Acl(x0
1). The extension tox2 lightsheets is trivial.

VI. STATING AND PROVING A QUANTUM BOUSSO
BOUND

The classical CGHS action is

SCGHS5E d2xA2g$e22f@R14~¹f!214#1Lm%.

~32!

For N conformal matter fields, Hawking radiation and i
backreaction on the geometry can be accounted for by a
ing to the classical CGHS action the nonlocal term

SPL52
N

48E d2xA2g~x!

3E d2x8A2g~x8!R~x!G~x,x8!R~x8!, ~33!

whereG(x,x8) is the Green’s function for¹2. This is a one
loop quantum correction but it nevertheless contributes
leading order in a 1/N expansion. At the one loop level, the
is the freedom of also adding a local counterterm to the
tion. The large N theory becomes analytically soluble if w
add the following judiciously chosen local counterterm to t
action @8#:

Sct52
N

24E d2xA2gfR. ~34!

The full action for the RST model is then

SRST5SCGHS1SPL1Sct . ~35!

We can once again choose Kruskal gauge, but this t
r5f1 1

2 log(N/12). In conformal and Kruskal gauges, th
equations of motion become

]1]2V521, ~36!

and

]6
2 V52

12

N
T662t6 , ~37!

where
04400
d-

at

c-

e

V5
12

N
e22f1

f

2
1

1

4
log

N

48
. ~38!

The t6 term in Eq.~37! accounts for the normal-orderin
ambiguity. We wish to consider semiclassical excitatio
built on the vacuum state which has no positive frequen
excitations according to inertial observers onI 2. These in-
ertial coordinates,s6, are related to the Kruskal coordinate
by

x15es1
, x252e2s2

. ~39!

For coherent states built on thiss vacuum,t650 in s co-
ordinates. Its value in Kruskal coordinates is given by t
Schwarzian transformation law as

t652
1

4~x6!2
. ~40!

As worked out in@12#, the classical ‘‘area’’ of a point in
the RST model is

Acl58e22f2
N

3
f2

N

6
2

N

6
log

N

48
. ~41!

For coherent states built on thes vacuum, the renormalized
entanglement entropy across a point has a local contribu

Sent5
N

6 S f1
1

2
log

N

12
1

1

2
log~2x1x2! D . ~42!

The full entanglement entropy also has an infrared te
which is not locally associated to the horizon and so is
included here. See@12# for a detailed derivation and discus
sion of these points.

Now, V can be written as

V5
3

2N
~Acl14Sent!2

1

2
log~2x1x2!2 log 21

1

4
.

~43!

Differentiating, we obtain

]1V1
1

2x1
5

3

2N
]1Aqu. ~44!

When analyzing the RST model, we will leave entro
condition i unchanged. In the formulation of ii, we will re
place Acl with Aqu[Acl14Sent. In Kruskal coordinates,
these become

i. ]1s1<2T11

ii. 2s1~x0
1!< 1

4 ]1Aqu~x0
1!2s1~x1!

5E
x1

x0
1

dx̃1]1s1~ x̃1!2s1~x0
1!
7-7
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(i)

<2E
x1

x0
1

dx̃1T11~ x̃1!2s1~x0
1!

(eom)

5
N

6 S ]1V1
1

4x1D ] x
0
1

x1

2s1~x0
1!

5S 1

4
]1Aqu2

N

24x1D ] x
0
1

x1

2s1~x0
1!

(ii)

<
1

4
]1Aqu~x1!2

N

24

1

x1
1

N

24

1

x0
1

<
1

4
]1Aqu~x1!.

We find

E
0

1

dls~l!5E
x0

1

x1
1

dx̃1s1~ x̃1!

5E
x1

1

x0
1

dx̃1@2s1~ x̃1!#

<
1

4
@Aqu~0!2Aqu~1!#. ~45!
04400
With our entropy conditions, we see that the covariant
tropy bound is satisfied once we replaceAcl with Aqu.

It is interesting to note that the quantum Bousso bou
cannot be saturated for coherent states built on thes
vacuum. The obstruction to saturation is the term (N/24)
@(1/x0

1)2(1/x1)# that shows up in the calculation o
2s1(x1). However, had we built our state on top of th
Kruskal vacuum~i.e., the Hartle-Hawking state!, we would
have t150 and Sent5(N/6)@f1 1

2 log(N/12)#. As a result,
both our equations of motion and our definition ofAqu would
change in a way that eliminates the (N/24)@(1/x0

1)
2(1/x1)# term from the calculations. The quantum Bous
bound will then be saturated any time the two entropy c
ditions are saturated.
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